555 research outputs found

    Unified algebraic treatment of resonance

    Full text link
    Energy resonance in scattering is usually investigated either directly in the complex energy plane (E-plane) or indirectly in the complex angular momentum plane (L-plane). Another formulation complementing these two approaches was introduced recently. It is an indirect algebraic method that studies resonances in a complex charge plane (Z-plane). This latter approach will be generalized to provide a unified algebraic treatment of resonances in the complex E-, L-, and Z-planes. The complex scaling (rotation) method will be used in the development of this approach. The resolvent operators (Green's functions) are formally defined in these three spaces. Bound states spectrum and resonance energies in the E-plane are mapped onto a discrete set of poles of the respective resolvent operator on the real line of the L- and Z-planes. These poles move along trajectories as the energy is varied. A finite square integrable basis is used in the numerical implementation of this approach. Stability of poles and trajectories against variation in all computational parameters is demonstrated. Resonance energies for a given potential are calculated and compared with those obtained by other studies.Comment: 15 pages, 1 Table, 7 Figures (6 are snapshots of videos

    Density and P‐wave velocity structure beneath the Paraná Magmatic Province: Refertilization of an ancient lithospheric mantle

    Full text link
    We estimate density and P‐wave velocity perturbations in the mantle beneath the southeastern South America plate from geoid anomalies and P‐wave traveltime residuals to constrain the structure of the lithosphere underneath the Paraná Magmatic Province (PMP) and conterminous geological provinces. Our analysis shows a consistent correlation between density and velocity anomalies. The P‐wave speed and density are 1% and 15 kg/m3 lower, respectively, in the upper mantle under the Late Cretaceous to Cenozoic alkaline provinces, except beneath the Goiás Alkaline Province (GAP), where density (+20 kg/m3) and velocity (+0.5%) are relatively high. Underneath the PMP, the density is higher by about 50 kg/m3 in the north and 25 kg/m3 in the south, to a depth of 250 − 300 km. These values correlate with high‐velocity perturbations of +0.5% and +0.3%, respectively. Profiles of density perturbation versus depth in the upper mantle are different for the PMP and the adjacent Archean São Francisco (SFC) and Amazonian (AC) cratons. The Paleoproterozoic PMP basement has a high‐density root. The density is relatively low in the SFC and AC lithospheres. A reduction of density is a typical characteristic of chemically depleted Archean cratons. A more fertile Proterozoic and Phanerozoic subcontinental lithospheric mantle has a higher density, as deduced from density estimates of mantle xenoliths of different ages and composition. In conjunction with Re‐Os isotopic studies of the PMP basalts, chemical and isotopic analyses of peridodite xenoliths from the GAP in the northern PMP, and electromagnetic induction experiments of the PMP lithosphere, our density and P‐wave speed models suggest that the densification of the PMP lithosphere and flood basalt generation are related to mantle refertilization. Metasomatic refertilization resulted from the introduction of asthenospheric components from the mantle wedge above Proterozoic subduction zones, which surrounded the Paraná lithosphere. The high‐density PMP lithosphere is presently gravitationally unstable and prone to delamination.Key Points:Density and P‐wave velocity in the lithospheric mantle beneath the Paraná Magmatic Province are highHigh density precludes a depleted cratonic lithosphere and indicates refertilized lithospheric mantleBasalt magmatism suggests refertilized mantle with asthenospheric components from mantle wedgePeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/134193/1/ggge21079-sup-0003-2016GC006369-fs02.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/134193/2/ggge21079-sup-0004-2016GC006369-fs03.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/134193/3/ggge21079-sup-0002-2016GC006369-fs01.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/134193/4/ggge21079_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/134193/5/ggge21079.pd

    Crustal structure of the Kermadec arc from MANGO seismic refraction profiles

    Get PDF
    Three active-source seismic refraction profiles are integrated with morphological and potential field data to place the first regional constraints on the structure of the Kermadec subduction zone. These observations are used to test contrasting tectonic models for an along-strike transition in margin structure previously known as the 32°S boundary. We use residual bathymetry to constrain the geometry of this boundary and propose the name Central Kermadec Discontinuity (CKD). North of the CKD, the buried Tonga Ridge occupies the forearc with VP 6.5–7.3 km s-1 and residual free-air gravity anomalies constrain its latitudinal extent (north of 30.5°S), width (110 ± 20 km) and strike (~005° south of 25°S). South of the CKD the forearc is structurally homogeneous down-dip with VP 5.7–7.3 km s-1. In the Havre Trough backarc, crustal thickness south of the CKD is 8-9 km, which is up-to 4 km thinner than the northern Havre Trough and at least 1 km thinner than the southern Havre Trough. We suggest that the Eocene arc did not extend along the current length of the Tonga-Kermadec trench. The Eocene arc was originally connected to the Three Kings Ridge and the CKD was likely formed during separation and easterly translation of an Eocene arc substrate during the early Oligocene. We suggest that the first-order crustal thickness variations along the Kermadec arc were inherited from before the Neogene and reflect Mesozoic crustal structure, the Cenozoic evolution of the Tonga-Kermadec-Hikurangi margin and along-strike variations in the duration of arc volcanism

    Microseismicity of the Mid-Atlantic Ridge at 7°S-8°15′S and at the Logatchev Massif oceanic core complex at 14°40′N-14°50′N

    Get PDF
    Lithospheric formation at slow spreading rates is heterogeneous with multiple modalities, favoring symmetric spreading where magmatism dominates or core complex and inside corner high formation where tectonics dominate. We report microseismicity from three deployments of seismic networks at the Mid-Atlantic Ridge (MAR). Two networks surveyed the MAR near 7 degrees S in the vicinity of the Ascension transform fault. Three inside corner high settings were investigated. However, they remained seismically largely inactive and major seismic activity occurred along the center of the median valley. In contrast, at the Logatchev Massif core complex at 14 degrees 45N seismicity was sparse within the center of the median valley but concentrated along the eastern rift mountains just west of the serpentine hosted Logatchev hydrothermal vent field. To the north and south of the massif, however, seismic activity occurred along the ridge axis, emphasizing the asymmetry of seismicity at the Logatchev segment. Focal mechanisms indicated a large number of reverse faulting events occurring in the vicinity of the vent field at 3-5 km depth, which we interpret to reflect volume expansion accompanying serpentinization. At shallower depth of 2-4 km, some earthquakes in the vicinity of the vent field showed normal faulting behavior, suggesting that normal faults facilitates hydrothermal circulation feeding the vent field. Further, a second set of cross-cutting faults occurred, indicating that the surface location of the field is controlled by local fault systems

    Upper- and mid-mantle interaction between the Samoan plume and the Tonga-Kermadec slabs

    Get PDF
    Mantle plumes are thought to play a key role in transferring heat from the core\u2013mantle boundary to the lithosphere, where it can significantly influence plate tectonics. On impinging on the lithosphere at spreading ridges or in intra-plate settings, mantle plumes may generate hotspots, large igneous provinces and hence considerable dynamic topography. However, the active role of mantle plumes on subducting slabs remains poorly understood. Here we show that the stagnation at 660 km and fastest trench retreat of the Tonga slab in Southwestern Pacific are consistent with an interaction with the Samoan plume and the Hikurangi plateau. Our findings are based on comparisons between 3D anisotropic tomography images and 3D petrological-thermo-mechanical models, which self-consistently explain several unique features of the Fiji\u2013Tonga region. We identify four possible slip systems of bridgmanite in the lower mantle that reconcile the observed seismic anisotropy beneath the Tonga slab (VSH4VSV) with thermo-mechanical calculations

    Asperities and barriers on the seismogenic zone in North Chile: state-of-the-art after the 2007 Mw 7.7 Tocopilla earthquake inferred by GPS and InSAR data

    Get PDF
    The Mw 7.7 2007 November 14 earthquake had an epicentre located close to the city of Tocopilla, at the southern end of a known seismic gap in North Chile. Through modelling of Global Positioning System (GPS) and radar interferometry (InSAR) data, we show that this event ruptured the deeper part of the seismogenic interface (30–50 km) and did not reach the surface. The earthquake initiated at the hypocentre and was arrested ~150 km south, beneath the Mejillones Peninsula, an area already identified as an important structural barrier between two segments of the Peru–Chile subduction zone. Our preferred models for the Tocopilla main shock show slip concentrated in two main asperities, consistent with previous inversions of seismological data. Slip appears to have propagated towards relatively shallow depths at its southern extremity, under the Mejillones Peninsula. Our analysis of post-seismic deformation suggests that small but still significant post-seismic slip occurred within the first 10 d after the main shock, and that it was mostly concentrated at the southern end of the rupture. The post-seismic deformation occurring in this period represents ~12–19 per cent of the coseismic deformation, of which ~30–55 per cent has been released aseismically. Post-seismic slip appears to concentrate within regions that exhibit low coseismic slip, suggesting that the afterslip distribution during the first month of the post-seismic interval complements the coseismic slip. The 2007 Tocopilla earthquake released only ~2.5 per cent of the moment deficit accumulated on the interface during the past 130 yr and may be regarded as a possible precursor of a larger subduction earthquake rupturing partially or completely the 500-km-long North Chile seismic gap

    Creating and maintaining play connection in a toddler peer group

    Get PDF
    This study explores how one and two year old peers (henceforth toddlers) participate in joint play activities in a natural group-care setting. We focus on joint play activity between three toddler peers during one full day-care day in a Finnish toddler classroom. Questions guiding the analysis concern the sequential understanding of how play emerges within peer interaction and how toddler peers are able to build sustained co-participation in their joint play during the day. The analysis showed that joint play was fragmented and organized in short segments of dyadic or triadic interaction. Re-establishments of joint play and accumulation of significant play signals during the day were important practices for toddlers to constitute social organization and sustained co-participation in their multi-party peer play. The results strengthen our understanding of very young children as both more and less competent play companions in their peer groups and guide adults’ practice in relation to peer play in toddler classrooms.Peer reviewe

    Propofol induces MAPK/ERK cascade dependant expression of cFos and Egr-1 in rat hippocampal slices

    Get PDF
    Background: Propofol is a commonly used intravenous anesthetic agent, which produce rapid induction of and recovery from general anesthesia. Numerous clinical studies reported that propofol can potentially cause amnesia and memory loss in human subjects. The underlying mechanism for this memory loss is unclear but may potentially be related to the induction of memory-associated genes such as c-Fos and Egr-1 by propofol. This study explored the effects of propofol on c-Fos and Egr-1 expression in rat hippocampal slices. Findings: Hippocampal brain slices were exposed to varying concentrations of propofol at multiple time intervals. The transcription of the immediate early genes, c-Fos and Egr-1, was quantified using quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). MAPK/ERK inhibitors were used to investigate the mechanism of action. We demonstrate that propofol induced the expression of c-Fos and Egr-1 within 30 and 60 min of exposure time. At 16.8 μM concentration, propofol induced a 110% increase in c-Fos transcription and 90% decrease in the transcription of Egr-1. However, at concentrations above 100 μM, propofol failed to induce expression of c-Fos but did completely inhibit the transcription of Egr-1. Propofol-induced c-Fos and Egr-1 transcription was abolished by inhibitors of RAS, RAF, MEK, ERK and p38-MAPK in the MAPK/ERK cascade. Conclusions: Our study shows that clinically relevant concentrations of propofol induce c-Fos and down regulated Egr-1 expression via an MAPK/ERK mediated pathway. We demonstrated that propofol induces a time and dose dependant transcription of IEGs c-Fos and Egr-1 in rat hippocampal slices. We further demonstrate for the first time that propofol induced IEG expression was mediated via a MAPK/ERK dependant pathway. These novel findings provide a new avenue to investigate transcription-dependant mechanisms and suggest a parallel pathway of action with an unclear role in the activity of general anesthetics

    CO 2 REACTIVE TRANSPORT IN LIMESTONE: FLOW REGIMES, FLUID FLOW AND MECHANICAL ROCK PROPERTIES

    Get PDF
    ABSTRACT The influence of chemical reactions between injected CO 2 , formation fluids and the target rock formation leads to uncertainties for geological sequestration projects. Reactions may influence the fluid-flow field, i.e. reactive transport, and the mechanical rock properties, which might degrade, leading to uncertainties with respect to the rock integrity in the affected region. We investigate both the influence of calcite dissolution on the fluid flow and the mechanical rock properties for two cases: first under realistic CO 2 /brine field flow rates leading to heterogeneous dissolution, i.e. wormholing, and second under noflow conditions leading to a rather homogeneous dissolution. We find a significant influence of dissolution on single-and two-phase flow and changes of the elastic rock properties and the failure behavior. The study is an essential step toward understanding CO 2 plume migration and the effects caused by long-term migration of CO 2 in carbonate reservoirs, providing input parameters for reservoir models and reservoir surveillance
    corecore