90 research outputs found

    Stock Market Prediction Using Evolutionary Support Vector Machines: An Application To The ASE20 Index

    Get PDF
    The main motivation for this paper is to introduce a novel hybrid method for the prediction of the directional movement of financial assets with an application to the ASE20 Greek stock index. Specifically, we use an alternative computational methodology named evolutionary support vector machine (ESVM) stock predictor for modeling and trading the ASE20 Greek stock index extending the universe of the examined inputs to include autoregressive inputs and moving averages of the ASE20 index and other four financial indices. The proposed hybrid method consists of a combination of genetic algorithms with support vector machines modified to uncover effective short-term trading models and overcome the limitations of existing methods. For comparison purposes, the trading performance of the ESVM stock predictor is benchmarked with four traditional strategies (a naïve strategy, a buy and hold strategy, a moving average convergence/divergence and an autoregressive moving average model), and a multilayer perceptron neural network model. As it turns out, the proposed methodology produces a higher trading performance, even during the financial crisis period, in terms of annualized return and information ratio, while providing information about the relationship between the ASE20 index and DAX30, NIKKEI225, FTSE100 and S&P500 indices

    Financial time series prediction using spiking neural networks

    Get PDF
    In this paper a novel application of a particular type of spiking neural network, a Polychronous Spiking Network, was used for financial time series prediction. It is argued that the inherent temporal capabilities of this type of network are suited to non-stationary data such as this. The performance of the spiking neural network was benchmarked against three systems: two "traditional", rate-encoded, neural networks; a Multi-Layer Perceptron neural network and a Dynamic Ridge Polynomial neural network, and a standard Linear Predictor Coefficients model. For this comparison three non-stationary and noisy time series were used: IBM stock data; US/Euro exchange rate data, and the price of Brent crude oil. The experiments demonstrated favourable prediction results for the Spiking Neural Network in terms of Annualised Return and prediction error for 5-Step ahead predictions. These results were also supported by other relevant metrics such as Maximum Drawdown and Signal-To-Noise ratio. This work demonstrated the applicability of the Polychronous Spiking Network to financial data forecasting and this in turn indicates the potential of using such networks over traditional systems in difficult to manage non-stationary environments. © 2014 Reid et al

    Forecasting Government Bond Spreads with Heuristic Models:Evidence from the Eurozone Periphery

    Get PDF
    This study investigates the predictability of European long-term government bond spreads through the application of heuristic and metaheuristic support vector regression (SVR) hybrid structures. Genetic, krill herd and sine–cosine algorithms are applied to the parameterization process of the SVR and locally weighted SVR (LSVR) methods. The inputs of the SVR models are selected from a large pool of linear and non-linear individual predictors. The statistical performance of the main models is evaluated against a random walk, an Autoregressive Moving Average, the best individual prediction model and the traditional SVR and LSVR structures. All models are applied to forecast daily and weekly government bond spreads of Greece, Ireland, Italy, Portugal and Spain over the sample period 2000–2017. The results show that the sine–cosine LSVR is outperforming its counterparts in terms of statistical accuracy, while metaheuristic approaches seem to benefit the parameterization process more than the heuristic ones
    • …
    corecore