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Abstract 

 

This study investigates the predictability of European long-term government bond spreads through the 

application of heuristic and metaheuristic Support Vector Regression (SVR) hybrid structures. Genetic, 

krill herd and sine-cosine algorithms are applied to the parameterization process of the SVR and Locally 

weighted SVR (LSVR) methods. The inputs of the SVR models are selected from a large pool of linear 

and non-linear individual predictors. The statistical performance of the main models is evaluated against 

a Random Walk (RW), an Autoregressive Moving Average (ARMA), the best individual prediction 

model and the traditional SVR and LSVR structures. All models are applied to forecast daily and weekly 

government bond spreads of Greece, Ireland, Italy, Portugal and Spain over the sample period 2000-

2017. The results show that the sine-cosine LSVR is outperforming its counterparts in terms of statistical 

accuracy, while metaheuristic approaches seem to benefit the parameterization process more than the 

heuristic ones. 
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1. Introduction  

The introduction of the euro in January of 1999 has led to the elimination of the exchange rate risk 

premium and the beginning of common monetary policy with a clearly defined objective of the price 

stability that resulted in firmly anchored inflation expectations within the Economic and Monetary Union 

(EMU) (ECB, 2010). Consequently, it facilitated the financial integration process among the member 

countries, the degree of which could be measured by government bond yield differentials, i.e. yield 

spreads. For a given maturity, government yield spreads are typically calculated vis-a-vis yields of a 

country whose debt is viewed as very liquid and having low credit risk.1 Hence, sovereign spreads are 

also good indicators of relative financing conditions of a specific country. Since the launch of the euro 

and up until the Global Financial Crisis (GFC) in 2007-2009, government yield spreads within the EMU 

stabilized at lower levels than before the EMU and also showed the tendency to co-move, indicating 

successful financial integration (Georgoutsos and Migiakis, 2012). In the absence of the exchange rate 

risk, yield spreads of individual countries were mainly driven by the credit risk and liquidity risk premia 

perceived to be relatively low (Aristei and Martelli, 2014; Dewachter et al., 2015).  

Following the GFC and the subsequent Sovereign Debt Crisis in the Eurozone (SDC), government bond 

market developments in the currency bloc received unprecedented attention from policy makers, 

financial market participants, economists, academics and the public. Interest rates on public debt rose 

and diverged across the Eurozone with yield differentials widening sharply in some countries 

experiencing deteriorating fiscal positions and weak economic fundamentals. The sovereign bond 

market stress was likely amplified through the spill-over effects between periphery and core countries 

(Antonakakis and Vergos, 2013). For some countries, the exchange rate risk may have reappeared 

pushing yields upward due to speculations about the exit from the euro by those countries (Favero, 2013).  

Another related feature of this period was the divergence in retail bank lending rates across the Eurozone 

despite common accommodative monetary policy. As Darracq-Paries et al. (2014) show, the wedge 

between the private borrowing costs was to some extent driven by the fragmentation in bank funding 

costs across the currency bloc as a result of government bond market distress. Interest rates on public 

debt, which is perceived as relatively risk-free, are considered as the benchmark for the borrowing costs 

of the private sector. Consequently, higher yields on government bonds imply higher funding costs for 

households, financial and non-financial corporations. Thus, well-functioning bond markets are crucial 

for the transmission mechanism of monetary policy to real economy. On the other hand, heightened 

financial market stress may weaken this transmission if the link between the policy rate and market 

benchmark interest rates, upon which bank lending rates are typically based, breaks down (ECB, 2010; 

Darracq-Paries et al., 2014). Since the sovereign debt crisis, the European Central Bank has 

acknowledged the impact of sovereign bond market stress on the effectiveness of its policy and has 

                                                           
1 In the case of the Eurozone, the German Bunds are commonly used as such a benchmark. For instance, see Aristei and 

Martelli (2014). 
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adopted a wide set of policies to enhance the policy transmission across the Eurozone in order to achieve 

its mandate (Lautenschläger, 2017).  

It is clear from the above that government debt securities play an important role in the financial market. 

The Eurozone bond yields and yield spreads as well as their dynamics provide investors, policy makers, 

economists and academics with valuable information about the cost of public and private financing and 

credit risk within the EMU, the effectiveness of common monetary policy and the degree of financial 

integration among the countries in the Eurozone. Although several studies attempt to model government 

spreads in an effort to understand the underlying factors driving their erratic behaviour (Duffie et al. 

2003; Gómez‐Puig 2009; Manganelli and Wolswijk 2009; Paniagua et al., 2016; Leschinski and 

Bertram, 2017), not many researchers actually attempt to forecast the future levels of yield spreads. Such 

limited examples are the works of Diebold and Li (2006) and Favero (2013). 

This gap in the literature is partially explained by the fact that European government bond spreads are 

characterized by non-linearities and high volatility. Long-term government bond spreads between euro-

area countries and Germany are known to follow unstable patterns through time (Abad et al. 

2010).Traditional linear and non-linear statistical models, despite their widespread use in 

macroeconomic forecasting applications, struggle to capture efficiently the nature of such data. As a 

consequence, practitioners, academic researchers and policy makers turn to more complex optimization 

techniques in their effort to overcome the ineffectiveness of easy-to-implement models. This explains 

why the forecasting literature is voluminous, when it comes to advanced prediction methodologies 

following the principles of machine learning, kernel-based optimizations and neural network structures 

(Kaastra and Boy 1996; Gilli and Schumann 2012; Patel et al. 2015). 

The purpose of this study is to perform an empirical analysis that evaluates and compares the forecasting 

power of hybrid heuristic-SVR models applied to 10-year Government Bond Spreads (10YGBS) of the 

selected Eurozone countries. The main contribution of the paper is that we explore the utility of Krill 

Herd and Sine Cosine algorithms in the parameterization of the Support Vector Regression (SVRs) and 

Locally Weighted SVR counterparts. To the best of our knowledge, such a forecasting study has not 

been performed before. Additionally, we contribute in the financial literature of heuristics, as no other 

studies have investigated the robustness of the KH and SC SVR structures in financial and/or economic 

applications, while none has explored the potential benefits of combining SC with LSVR. Finally, this 

paper adds to the empirical literature on forecasting bond spreads (Diebold and Li 2006; Favero, 2013).  

The performance of KH and SC hybrid SVRs is benchmarked against the traditional SVR and LSVR 

models. All models are applied to forecast the 10YGBS of Greece, Ireland, Italy, Portugal and Spain 

(GIIPS) on a daily and weekly basis over the period 2000-2017. Therefore, the focus of our analysis is 

on the Eurozone periphery spreads that have presented a volatile and erratic behaviour during the SDC. 

Favero (2013) suggests that co-movements of yields in the Euro area imply either the impact of credit 

risk or a strong relationship between credit-risk and liquidity risk. For that reason, it is crucial to 
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investigate the cases of GIIPS suffering more from the credit and liquidity tightening conditions 

observed especially after 2009. To make the statistical analysis more robust, the sample period is 

separated into two parts: 2000-2008 and 2008-2017. The first period covers the GFC, while the second 

the Eurozone SDC. In total, we carry out four forecasting exercises for each country. In terms of the 

results, the SC algorithm is found as the best prediction model of this study for all countries and periods 

considered. The SC-LSVR hybrid model outperforms the KH counterparts, while the evolutionary 

heuristics seems to be the less efficient in terms of forecasting accuracy. The forecasting results also 

show that yields appear more difficult to be forecasted within the SDC than the GFC, while models are 

performing generally worse when it comes to forecasting the 10YGBS of Greece, Ireland and Portugal. 

The rest of the paper is organized as follows. Section 2 is a brief literature review on heuristic and SVR 

techniques. The dataset and forecasting exercises are described in Section 3. The theoretical background 

of SVR and LSVR is outlined in Section 4. Section 5 includes the description of the heuristic models 

employed in this study along with the explanation of how their inputs and benchmarks are selected. The 

statistical performance of all models is analysed in Section 6. Section 7 includes some concluding 

remarks. Finally, all the information regarding the input set and technical characteristics of the model 

under study are summarized in the Appendix. 

 

2. Brief Literature Review 

Heuristic and metaheuristic optimization techniques have recently become a powerful tool in the hands 

of practitioners (Gilli et al. 2008). Several studies are focused on heuristics based on evolutionary 

principles (Fonseca and Fleming 1995; Alcaraz and Maroto 2001; Ahn and Kim 2008; Aguilar-Rivera 

et al. 2015). The main approach in such studies is the application of Genetic Algorithms (GAs) as 

proposed by Holland (1975). Although GAs apply the Darwinian principles of survival and reproduction 

of the fittest successfully, several GA based models suffer from local optima constraints during the 

search space. Metaheuristics are considered a superior class of heuristics because of their ability to avoid 

local optima trapping and over-fitting, while keeping the demands of computational time relatively low 

(Van Breedam 2001). Many researchers postulate that such algorithms are able to create the balance 

between the local and the global search space, by identifying potential suitable random variables that are 

not dependent on the problem under study (Talbi 2009). There are several trends in the metaheuristic 

modelling literature. The most prominent one is related to the nature-inspired metaheuristic approaches 

that are motivated by the evolution of species or their swarm movement behavior. Such examples are 

algorithms approximating ant and bee colonies movements (Dorigo et al. 2006; Karaboga and Akay 

2009), firefly behavior (Yang 2010), bat flying (Yang and Gandomi 2012) and animal immigration 

patterns (Li et al 2014). Eventually, practitioners need to make a decision on screening for some robust 

heuristics in order to proceed with the parameterization and calibration of their forecasting models. In 
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this study, apart from the traditional evolutionary GA heuristic approach, we focus on the performance 

of two other metaheuristics. 

The first one is the KH, which is a successful metaheuristic method proposed by Gandomi and Alavi 

(2012). The algorithm is motivated by the behavior of ocean krill in herds. The intuition of KH is to 

incorporate the mean-reverse effect that predator attacks can inflict on the krill herd density into 

optimizing the future positions and eventually regrouping behavior of dispersed krill. With the KH 

approach, every krill’s position is approximated through a time-dependent function that is based on three 

different motions, namely, the movement induced by other individuals, the foraging motion and random 

physical diffusion. According to Gandomi and Alavi (2012) and Wang et al. (2014), KH is found 

superior to previously mentioned metaheuristic models, due to the avoidance of a gradient search and 

expectation of fine-tuning of only one parameter. Unlike the first one, the second metaheuristic is not 

nature-based. Recently, Mirjalili (2016) proposed the Sine Cosine (SC) algorithm that is based on 

mathematical objective functions rather than bio-inspired ones. SC is a population-based optimization 

algorithm that is able to generate multiple random candidate solutions and orientate them towards the 

best solution through a mathematical approach of sine and cosine functions. These mathematical 

functions are infused with a set of random adaptive variables that optimize the balance between 

exploration and exploitation of the search space, unlike in the case of KH. This increases the probability 

of reaching the global optimum solution faster by exploring the most promising regions of the search 

space.   

SVRs are regression-based models used to explore the non-linear and data-adaptive dynamics of 

financial time series (Vapnik 1995). They have been successfully applied in numerous financial 

forecasting applications. For example, Lu et al. (2009) suggest that SVRs’ statistical performance is 

better than that of traditional random walks when forecasting daily stock prices. Wang and Zhu (2010) 

proposed a two-step kernel SVR for forecasting the S&P500 and NASDAQ indices with promising 

results. The LSVR is another class of SVRs that has proven in cases to be superior to the traditional SVR 

structures. The LSVR imposes penalties to past data and assumes that recent observations are more 

important. This is a concept suitable to the nature of financial time series. The applications of LSVR in 

the literature are not so extensive, however. Such examples are the works of Yang et al. (2009) and Wu 

and Akbarov (2011) who apply successfully the LSVR to forecast financial data and warranty claims.  

The main disadvantage of the SVR is that its performance is sensitive to the parameterization process. 

This is where heuristic and metaheuristic models, such as GA, KH and SC, prove to be very useful (Gilli 

and Schumann 2015). Given that there is no formal theory on how to select optimal SVR parameters, 

researchers, instead of using the traditional cross-validation methods, resort in comparisons of hybrid 

heuristic-SVR techniques in different forecasting applications. Many of the above algorithms are 

successfully applied in the SVRs in order to obtain optimal SVR parameters and to maximize forecasting 

performance. Yuan (2012) claims that the combination of of GA and SVR provides better forecasts for 



6 
 

sales volume than traditional SVR and NN models. Recently, Stasinakis et al. (2016) and Sermpinis et 

al. (2017) combine KH with SVR and LSVR, respectively, in a forecasting and trading application of 

exchange traded funds. Their results show that KH SVR optimization is superior to the traditional SVRs 

and GA-SVR models, while the advantages of LSVR are also validated. Finally, Li et al. (2018) propose 

a SC-SVR hybrid model that is applied in a financial forecasting competition between different heuristic-

SVR techniques. Their findings suggest that SC optimization is superior to all other bio-inspired 

algorithms. 

 

3. Dataset 

In this study we focus on the 10-year Government Bond Spreads (10YGBS) of the five periphery 

Eurozone countries. More specifically, our empirical analysis is based on forecasting the daily and 

weekly 10YGBS of Greece, Ireland, Italy, Portugal and Spain over the period 2000-2017. For all the 

10YGBS, the benchmark is the German Bund. The data series are the price indices of respective spreads 

and are summarized in Table 1. The exception is Spain, where we use bond yield spreads as the price 

index was not available. 

**Insert Table 1** 

Figure 1 plots the time series of the daily bond spreads for all countries under study over the sample 

period. The left-hand-side scale denotes the price of a spread index for Greece, Ireland, Italy and 

Portugal, while the right-hand-side of the figure represents the yield spread for Spain. Over the course 

of the GFC, the yield spreads in the GIIPS climbed up somewhat, especially so between the end of 2008 

and the start of 2009. This increase was later partially reversed only to reappear again at the onset to the 

SDC that started in Greece in autumn of 2009. The crisis was quick to spread across the Eurozone 

between 2010 and 2012. During this period, the peripheral countries’ government bond spreads went 

sharply upwards. In particular, bond spreads reached levels that had never been observed over the history 

of the EMU in 2011-2013. Based on this figure, it seems appropriate to forecast the country-specific 

10YGBS for two distinct sample periods, namely, 2000-2008 and 2008-2017.  

**Insert Figure 1** 

The Jarque-Bera (1980) and Augmented Dickey–Fuller test performed on the 10YGBS series confirms 

their non-normality and non-stationarity at the 99% confidence interval respectively. For that reason, all 

series are transformed into daily and weekly series of the rate of returns using the following formula2: 

                1/ 1t t tR BS BS                                             (1) 

                                                           
2 This is consistent with also the approach of Favero (2013). Note that in the case of Spain it is actually a percentage change 

in the yield spread rather than the rate of return on the price index as for other countries.  
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where Rt  is the rate of return and BSt is the 10YGBS value (daily or weekly) at time t. The descriptive 

statistics of the return series obtained for the two periods and frequencies are shown in the following 

Table 2: 

**Insert Table 2** 

The Jarque-Bera statistic confirms that the five return series are non-normal at the 99% confidence level, 

while the Augmented Dickey-Fuller (ADF) reports that the null hypothesis of a unit root is rejected at 

the 99% statistical level for every 10YGBS. The models under study, their benchmarks and individual 

predictors (pool of inputs) are applied to forecast the one-day-ahead rate of return (E(Rt)) of the five 

10YGBS. Each model’s performance is consequently evaluated based on four forecasting exercises 

presented in Table 3.   

**Insert Table 3** 

From the Table 3 above, it is clear that all models are optimized in-sample and their forecasts will be 

evaluated out-of-sample. F1 and F2 are spanning over the sample 2000-2008, while F3 and F4 refers to 

the period 2008-2017. In addition, separating F1 and F3 from F2 and F4, respectively, allows us to check 

the robustness of our results by employing different data frequency. 

 

4. Theoretical Framework 

SVR, as proposed by Vapnik (1995), is a class of Support Vector Machines (SVMs) applied to the 

principle of structural risk minimization. SVR distinguishes itself from other forecasting methods by 

combining its ability to project robust non-linear regression models with good generalization ability in 

previously unseen data. This is achieved consistently by relying only on a subset of the training 

observations known as the support vectors.  

If {(x1,y1), (x2,y2)…, (xn, yn)}, where , , 1...i ix X R y Y R i n      are the training data and n the total 

number of training samples, the general SVR function can be specified as: 

                                                               ( ) ( )Tf x w x b                                 (2) 

φ(x) is the non-linear function that maps the input data vector x into a feature space where the training 

data exhibit linearity. In order to obtain w and b, the following regularized risk function must be 

minimized:   

                       2

1

0 | ( ) |1 1
( ) ( , ( )) , ( , ( )) ,

| ( ) |2

n
i i

i i i i

i i i

if y f x
R C C L y f x w L y f x

y f x if othern
  



    
      

   
                    (3) 

Parameters C and ε are predefined by the practitioner, yi is the actual value at time i, f(xi) is the predicted 

value at the same period and 𝐿𝜀 is ε-sensitive loss function The loss function identifies the predicted 

values that have at most ε deviations from the actual values yi. The ε parameter defines the known ‘tube’ 

in the SVR literature. The problem is transformed into the following quadratic optimization problem, by 

introducing the slack variables i  and *

i : 
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                    Minimize 
2*

1

1
( )

2

n

i i

i

C w 


  subject to *

0

0

0

i

i

C





 
 

 
  

and 
*

( )

( )

T

i i i

T

i i i

y w x b

w x b y

  

  

      
 

      

          (4) 

Because of the unbounded nature of ε, Schölkopf et al. (1999) suggested the bounded SVR equivalent, 

where parameter (0,1)v  controls the ε allowing for a quicker and robust optimization solution. 

Equation (4) is transformed into the vSVR optimization problem that follows: 

Minimize 
2*

1

1 1
( )

2

n

i i

i

C v w
n

  


 
   

 
  subject to *

0

0

0

i

i

C





 
 

 
  

and 
*

( )

( )

T

i i i

T

i i i

y w x b

w x b y

  

  

      
 

      
      (5)  

Equation (5) becomes a dual problem and its solution is based on the two Lagrange multipliers *,i ia a and 

the kernel function ( , )iK x x  :  

        *

1

( ) ( ) ( , )
n

i i if x a a K x x b


   , where *0 ,i i

C
a a

n
                                           (6)  

In this study, the transformation of input space is achieved with the Gaussian Radial Basis Function 

(RBF) for all the SVR models applied. A RBF kernel is in general specified as: 

                 
2

( , ) exp( ), 0i iK x x x x                              (7) 

where γ is the variance of the kernel function. RBFs require only one parameter to be optimized ( γ) and 

provide good forecasting results in similar SVR applications (Lu et al. 2009; Yeh et al. 2011; Kao et al. 

2013). From a theoretical perspective, parameter C satisfies the need to trade model complexity for a 

training error and vice versa (Cherkassky and Ma 2004). Additionally, the intuition of vSVR is that the 

parameter v is an approximation of the upper and lower bounds of the fraction of errors (Schölkopf et 

al. 1999). 3 

Although vSVR has been successfully applied in numerous relevant studies, it fundamentally does not 

account for the fact that recent information might be more relevant to interpret financial and economic 

series of data. The Locally Weighted Regression (LWR) is able to cope with that, since it is based on 

the assumption that the nearest to the predictor values are its best indicators. LWR is able to define an 

estimate g(x) for every value x in the dimensional space of the independent variables. Cleveland and 

Devlin (1988) suggest that the neighbourhood is defined by estimating the distances of q observations 

xi from x, where 1 q n  . Closer points to x are assigned larger weights compared to those that are far, 

confirming the locality attribute of the method (Lee et al. 2005). The LWR is specified through the 

Euclidian distance ρ and a tricubic weight function W(u) for each training data (xi, yi) as below: 

                                

3 3(1 ) ,0 1 ( , )
( ) , ( )

( )0,

i
i i

u u x x
W u w x W

d xotherwise

       
     

    
                     (8) 

                                                           
3 For more details on the mathematical solutions and SVR modelling, the interested reader should refer to Vapnik (1995). 
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where d(x) is the Euclidian distance specifically from the qth-nearest xi to x. Weights are bounded as per

[0,1]iw  , while the weight is maximized when xi is closest to x and minimized for the qth-nearest xi to 

x.  The work of Cleveland and Devlin (1988) provides a detailed explanation on the selection of weights 

and weight functions for the LWR purposes. Through the LWR, traditional vSVR can be transformed to 

a Locally Weighted vSVR (LSVR), where the parameter C is not constant, but locally adjusted as per

*i iC w C . Thus, the quadratic optimization problem of equation (5) is translated to the following: 

            Minimize 
2*

1

1 1
( )

2

n

i i i

i

C v w
n

  


 
   

 
 subject to *

0

0

0

i

i

iC





 
 

 
  

 and 
*

( )

( )

T

i i i

T

i i i

y w x b

w x b y

  

  

      
 

      

     (9) 

LSVR is theoretically advantageous over the traditional one, because the weighted Ci provides the better 

balance between the training error and model complexity. This improvement is derived by the fact that 

higher penalties (smaller weights) are imposed to bigger slack variables. Additionally, it is expected that 

the forecasting performance of LSVR increases gradually (Lee et al. 2005), unlike for the non-locally 

optimized vSVR.  

 

5. Heuristic Models 

This section summarizes the heuristic models applied to forecast the government bond spreads. Initially, 

the GA and KH SVR models are described. The SC counterpart is then explained. Finally, the SVR 

inputs and the benchmark model selection are explained. 

 

5.1 Genetic Algorithm Support Vector Regression 

The previous section and the numerous applications of GAs in SVR parameterization tasks motivates us 

to implement a simple GA to allow us to search the feature space and encode the optimal SVR parameters 

into parameter genes. This is done by implementing the traditional one-point crossover and the mutation 

operator (Goldberg 1989). The purpose of the one-point crossover operators is to create two offsprings 

from every two parents. The associated probability of selecting an individual as a parent for the crossover 

operator is called crossover probability. In this study this probability is set at the value of 0.90. The 

crossover probability is not set to 1 in order to allow very good solutions of a population to pass through 

the next generation’s population without being altered. The offspring created is then replacing its parents 

in the population in forthcoming iterations. The second applied operator, the mutation one, is applied in 

order to randomly select genes in the population based on the preset mutation probability. In this case, 

setting this probability to 0.1 allows us to avoid local optima and explore a larger portion of the search 

space. Following the principles of Holland (1975), the roulette wheel selection method is applied for the 

GA selection step. Based on that, the genes with the better fitness are more probable to be selected. The 

evolution process is continued based on the elitism principle. Elitism accelerates the evolution and 
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ensures that the best solutions are made available to the new population at the end of every generation. 

4The population of chromosomes is initialized in the training sub-period, while, in order to achieve the 

optimal selection of the SVR parameters, the root mean squared error (RMSE) needs to be minimized 

in the test-sub period. Therefore, the following fitness function needs to be maximized:  

 1/ (1 )Fitness RMSE             (10) 

This process is performed for the vSVR and LSVR structures (GA-vSVR, GA-LSVR) with the 

application of the RBF kernel (equation (7)). The optimized parameters of the best solution are used to 

train the vSVR and LSVR to produce the final optimized forecast, which is evaluated out-of-sample. 

The technical characteristics of the GA are presented in Appendix B, while the flowchart of GA-vSVR 

methodology is show in figure 3. 

 

5.2 Krill Herd Support Vector Regression 

The KH algorithm is a metaheuristic optimization technique inspired by the behavior of krill individuals. 

Krill move in herds in nature with an aim to reach food resources quicker. This behavior is characterized 

by a mean-reversion effect observed when sea predators attack the herd. In other words, an attack on the 

herd disperses the krill individuals and reduces its density. Once the attack is over, krill individuals 

orientate to return in closer positions to other krill in order to return the herd density to previous levels. 

This orientation is based on sensing nearby krill moving towards the optimal path to reach food. 

Gandomi and Alavi (2012) suggest that the position (P) of each krill in the search space is influenced by 

three motions, namely, the movement induced by other krill (M), the foraging action (F) and the random 

diffusion (RD). These three motions allow the practitioner to calculate the changes in the position of 

every krill j are captured by the Lagrangian formulation: 

                                                                      
j

j j j

dP
M F RD

dt
                                                         (11) 

The new movement motion M t+1 of each krill j is calculated as:  

                                                                     

1 max

arg

t t

j j M

loc t

j j j

M M eff k

eff eff eff

    
 

   

                                               (12) 

where Mmax the maximum induced speed, [0,1]Mk   the inertia weight of the motion, 
jeff  the direction 

of the motion and 
loc

jeff ,
argt

jeff the local effect by a neighbor krill and the target direction effect by the 

best individual krill, respectively. Given the total number of individual krill 𝑁𝑘, the neighbor krill are 

identified through the calculation of a sensing distance from the jth krill:  

                                                                        , k '

' 1

(1/ N )
kN

s j j j

j

d P P


                                 (13) 

                                                           
4 For more technical details on the use of GAs for the SVR parameterization refer to Sermpinis et al. (2015). 
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The updated foraging motion F t+1 of every krill j is based on the food location estimate and the krill’s 

past experience in locating a correct food position:  

                                                               

1t t

j F j F j

food best

j j j

F V floc k F

floc floc floc

   
 

   

                                               (14) 

where FV is the foraging speed, [0,1]Fk  is the inertia weight of the motion, 
jfloc is the location of the 

food and 
food

jfloc ,
best

jfloc is the food attraction and the effect from the best food-locating jth krill so far, 

respectively. The RD motion is calculated as the maximum diffusion speed RDmax and a random 

directional vector δ with values between -1 and 1. In other words:  

                                                                                 maxRD RD                                          (15) 

The KH algorithm approximates the global optima of the krill swarm based on the food attraction 

estimate. The above motions show that optimal krill positions are obtained through local and global 

search of the search space. Namely, krill initially are searching locally in order to increase the herd 

density. The more the density increases, the more krill start to orientate towards food than neighbor krill. 

The RD motion diffuses potential biased movements of krill towards food or nearby krill. 5Finally, the 

position Pj of each krill at time t+Δt is given as:   

                                                               

 
1

( ) ( )
j

j j

NP

cr r r

r

dP
P t t P t t

dt

t Z UpB LowB


 
     

 
 
   
  


                                              (16) 

where [0,2]crZ  is a constant number, NP is the number of parameters optimized (in our case the three 

SVR parameters) and ,r rUpB LowB  is the upper and lower bounds of the parameters respectively. The 

Δt practically is the only parameter that needs fine-tuning.6 This is the striking advantage of the method 

compared to other more complicated metaheuristics approaches. As the final step towards improvement 

of the krill positions, mutation and crossover operators are applied.   

In our study, the KH is used to optimize the vSVR and LSVR parameters (KH-vSVR, KH-LSVR) with 

the application of the RBF kernel (equation (7)). The practitioner is required to predefine three 

parameters, while the potential three-dimensional space is identified through the range of the bounds of 

each SVR parameter. The KH algorithm is optimized based on the same fitness function as in the GA 

counterpart (equation (10)). The KH algorithm is trained in the training sub-period and its performance 

is evaluated in the test sub-period. The technical characteristics of KH are given in Appendix B also. 

The flowcharts of GA-vSVR and KH-LSVR are presented in Figure 2(i) and 2(ii) respectively below: 

**Insert Figure 2** 

                                                           
5 The reader interested in the exact mathematical details of the three motions should refer to Gandomi and Alavi (2012). 
6 The maximum induced speed and the foraging speed are set to 0.01 and 0.02 ms-1 respectively. The Zcr is set at values lower 

than 1. kM and kF are initially set high (0.9) and then linearly decreased to 0.1 (Gandomi and Alavi 2012). 
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5.3 Sine Cosine Support Vector Regression  

The SC algorithm is a population-based optimization technique as proposed by Mirjalili (2016). SC is 

able to search different areas of the given search space by combining an exploration and exploitation 

phase, a property that is also observed in the KH algorithm. This attribute allows such population-based 

optimization techniques to start with a set of random solutions and proceed to the global optima. The 

exploration property minimizes the probability of getting trapped in the local optima and the exploitation 

one suggests that the higher the number of random solutions, the higher the probability of obtaining the 

global optima. In the case of SC, the best global solution is found by updating the positions of the random 

candidate solutions towards the best solution with the use of sine and cosine functions as objective 

functions. The local search of different regions in the search space is achieved by allowing the sine and 

cosine functions to return to values greater than one or less than minus one. Following the work of 

Mirjalili (2016), the position updating equations are the following: 

 

    
1 2 3 41

1 2 3 4

sin( ) , 0.5

cos( ) , 0.5

t t t

j j jt

j t t t

j j j

P r r r P P r
P

P r r r P P r


         

  
        

                                      (17) 

where 
t

jP  is the position of the current solution for the jth dimension at tth and 
t

jP is the position of the 

destination point, 1 2 3 4, , ,r r r r     are random variables. 

Regarding the random variables, 1 ( / )r c t c T     is a balancing random metric, where c is a constant, 

t is the current iteration and T  is the maximum number of iterations. This random variable is crucial for 

balancing exploration and exploitation phases of the algorithm. Calibrating 1r  leads to an adaptive shift 

in the range of sine and cosine calculations and consequently dictates the next positions’ region, allowing 

for higher exploration of the search space. This region would be either in the space between the current 

solution and the next destination or outside it (see Figure 3). This cyclical pattern is based on the 

properties of sine and cosine functions and enables the SC algorithm to reposition new solutions around 

other ones, infusing better exploitation of the search space.  The random variable 2r is bounded between 

[0,2π] and indicates whether the random location will be within or outside the cyclical pattern. In other 

words, it defines the allowed movement towards or outwards of the next destination. The third random 

variable 3r is a random weight defining the emphasis of the destination position in defining the distance. 

Finally, 4r  is between [0,1] and provides an equal switch between the sine and cosine functions in 

equation (17). Figure 3 illustrates the effects of sine and cosine functions on the next positon 

identification. 

**Insert Figure 3** 
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The heuristic algorithm presents several advantages over other similar techniques. SC generates 

improved sets of random solutions and benefits from high exploration and local optima avoidance, 

compared with individual-based algorithms, such as GAs. The algorithm is able to separate the search 

space into different areas that are explored as more promising when sine and cosine values are between 

minus one and one. The adaptive range imposed on the two functions allows for a smooth transition 

between exploration and exploitation, unlike in the case of KH. Finally, the best approximated global 

optimum is stored as a destination point; therefore, this information is always exploited in the next steps 

of the optimization.  

Applying the SC algorithm to the traditional SVR and LSVR models seems ideal to evaluate whether 

these advantages are significant compared to previously used heuristic models. In order to achieve this, 

we follow the guidelines of Li et al. (2018). These authors suggest that the SC algorithm is able to 

calibrate and provide the optimal parameters of the SVR method, but initially data normalization to the 

range of [-1.1] and search space reconstruction based on the C-C method (Kim et al. 1999) are required. 

The fitness function and kernel function of the SC based SVR models are as in equations (7) and (10). 

The pseudo code of the SC algorithm is presented in Appendix B. 

 

5.4 Input Selection and benchmark models 

For the purposes of applying SVR for forecast combinations, we employ a pool of potential inputs. This 

pool consists of potential linear and non-linear individual predictors of all 10YGBS, which are applied 

to the in-sample period. The linear pool includes Simple Moving Averages (SMA), Exponential Moving 

Averages (EMA), Autoregressive terms (AR) and Autoregressive Moving Average (ARMA) models. 

The non-linear individual predictors include Smooth Transition Autoregressive Models (STAR), Nearest 

Neighbors Algorithms (k-NN), a Multi-Layer Perceptron (MLP), a Recurrent Neural Network (RNN), a 

Higher Order Neural Network (HONN), a Psi-Sigma Neural Network (PSN), Adaptive RBF and PSO 

Neural Network (ARBF-PSO), Genetic Programming (GP) and Gene Expression Programming (GEP). 

These predictors create a pool of three hundred and twenty-nine individual predictors in total for each 

forecasting exercise. The heuristic models will combine the best predictors in order to generate superior 

out-of-sample statistical performance (Timmermann 2006). Those models are traditional linear and non-

linear models in the forecasting literature, thus, it is out of the scope of this paper to describe these 

models in detail. 7 

In such forecasting tasks, the large dimension can impede the statistical performance of the SVR models 

and increase exponentially the computational costs. Therefore, we follow Jolliffe (2002) and perform 

Principal Component Analysis (PCA) to discard highly correlated variables while continuing to account 

                                                           
7 More information regarding the set of inputs is provided further in Appendix A.  
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for the 95% variance. The final PCs are used as final input sets to the SVR models. These sets are 

presented in Table 4.  

**Insert Table 4** 

It is obvious that the PCA analysis vastly decreases the input set dimensions. From the selected final 

inputs, as expected, non-linear models are dominant in terms of number and performance compared to 

their linear counterparts. The non-linear nature of the 10YGBS makes this result not surprising. The 

input performing the best most of times is the ARBF-PSO, while the linear PC are in two cases selected 

as the best individual predictors. The efficiency of the heuristic models is benchmarked with three non-

SVR models, namely the simple RW, ARMAs and the best individual predictor in each case. 

Additionally, as benchmarks we employ the vSVR and LSVR. The majority of the SVR studies suggest 

that vSVR models are superior to their “ε” counterparts, hence, our selection in this study. For the 

traditional vSVR, the grid search technique is selected for the parameter calibration. 

 

 6. Empirical Results 

This section shows the statistical analysis performed for the models, forecasting exercises and country-

specific 10YGBS. The statistically accuracy is evaluated through the Mean Absolute Error (MAE) and 

the RMSE. Their mathematical specifications are in Appendix C. The out-of-sample results for the 

forecasting exercises F1 and F2 spanning 2000-2008 period are displayed in Table 5 and 68. 

**Insert Table 5 and 6** 

From Tables 5 and 6, it is interesting to see that the models’ statistical ranking is relatively consistent 

across all countries and periods under study. The SC algorithm proves to be successful in optimizing the 

SVR and obtaining the highest accuracy throughout our forecasting exercises. The SC-LSVR appears to 

be the best performing model, which suggests that LSVR combined with SC algorithm is providing in 

most cases superior forecasts compared to the simple SVR structure. It should be noted, though, that this 

property is observed also in the remaining models. The KH counterparts are consistently the second best 

model in terms of forecasting accuracy. The benchmarks GA-vSVR and GA-LSVR do not manage to 

overcome neither the bio- nor the sine-cosine-inspired metaheuristics. Nonetheless, it is always found 

superior to the traditional vSVR and LSVR models. Finally, we should note that regardless of the 

particular parameterization process applied, the SVRs with the suggested input set have higher predictive 

ability than the best individual predictor of each case. This confirms the academic belief that combining 

forecasts from individual models with simple or more complex methods decreases forecast errors. 

Finally, the RW is the worst model in terms of the statistical metrics computed. In terms of the periods 

and countries under study, we observe, as expected, that government bond spreads are more difficult to 

be forecasted in F3 and F4 covering the Eurozone debt crisis period. Additionally, the results imply that 

                                                           
8 The in-sample results are consistent with the out-of-sample ones and are available upon request. They are not presented 

here to preserve space. 
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the forecasting performance is lower in the cases of Greece, Ireland and Portugal than in the cases of 

Italy and Spain. This is finding holds across different data frequencies (between F1 and F2) and different 

periods (F1-F3 and F2-F4). This could be explained by the fact that bond spreads might be driven by 

factors such as credit, liquidity and subprime loan default risks. These risks are found in to be greater in 

these three countries as compared to Italy and Spain as they seem to suffer more from spill-over and 

contagion effects (Favero, 2013). 

In order to further validate the above performance of our forecasts, the Diebold Mariano (DM) (1995) 

test is calculated. Its null hypothesis is that two forecasts have equal predictive accuracy.  For the 

purposes of this study, the test is applied to the pairs of out-of-sample forecasts. The first forecast is from 

the superior model based on the previously reported results, i.e. the SC-LSVR. The second forecast is 

every other model. For the calculation of the DM statistic we select the MAE as loss function. If the 

calculated DM statistic is negative, then the test indicates that the first model is more accurate than the 

second one. The lower the negative value, the more accurate are the SC-LSVR forecasts.  In addition to 

the DM test, we also employ the Pesaran-Timmermann (PT) (1992) test. The PT tests the direction co-

movements of the real and forecasted values. Its null hypothesis is that the model under study has no 

power in predicting the 10YGBS return series9. Table 7 below shows these results:  

**Insert Table 7** 

 

The two additional tests confirm the statistical ranking of the models utilized. The negative values of the 

DM statistic further support the statistical superiority of the SC-LSVR over all other models at 5% 

significance level. Only in four cases the DM statistic is not found significant at 5%, when the SC-LSVR 

is compared with the SC-vSVR. Nonetheless, in these cases the PT statistic is found more significant. 

Therefore, we conclude that the SC LSVR counterpart is the best performing model across all countries 

and forecasting exercises. The PT values also validate that metaheuristics are superior to the heuristic 

GA benchmark. Finally, in six and three cases RW and ARMAs are found to not be able to forecast the 

10YGBS series respectively, while in only one case an individual predictor is failing to do so. This is 

not surprising, as the best individual predictors are non-linear adaptive models as shown in Table 5. 

These types of models are known to have a significant forecasting power in financial and economic 

series as our dataset. Overall, our findings support the strand of literature that suggests that the SVRs are 

suitable modelling tools for such forecasting exercises, while practitioners need to pay more attention to 

metaheuristic calibration of the SVR parameters in order to achieve increased predictive performance. 

 

 

 

                                                           
9 The mathematical details of the tests can be found in Pesaran and Timmermann (1992) and Diebold and Mariano (1995). 
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7. Conclusions 

This work aims to contribute to two strands of the literature. Firstly, we investigate the predictability of 

10YGBS of the GIIPS during two sample periods, 2000-2008 and 2008-2017 (including in the out-of-

sample exercises the GFS and SDC), and, consequently, we add to the existing studies investigating the 

puzzle of bond spreads co-movements. Secondly, this study explores the utility of heuristics and 

metaheuristics for SVR optimization purposes. For this reason, initially, a pool of individual forecasts is 

generated based on the traditional linear and non-linear models. These models are screened and the final 

input vector is selected for the SVR structures. The study applies the GA, KH and SC algorithm in vSVR 

and LSVR techniques. These models are benchmarked with a RW and the best individual predictor from 

the input set of each country and period under study. Apart from these two non-SVR benchmarks, the 

traditional vSVR and LSVR are also compared with the GA, KH, and SC counterparts in terms of 

forecasting accuracy.  

The results provide several interesting findings. The SC algorithm is able to achieve high forecasting 

power for the 10YGBS and can be considered as the best prediction model of this study for all countries 

and periods considered. The SC-LSVR is found to be superior to the bio-inspired KH-LSVR, while both 

metaheuristic hybrids outperform the evolutionary heuristic GA-LSVR. This is in line with the literature 

that suggests that metaheuristics are able to achieve a beneficial trade-off between local and global 

search of the feature space. Our results are also consistent with a handful of studies that bring forward 

the superiority of LSVR over the traditional SVRs due to the higher penalties imposed to past 

observations (Yang et al., 2009; Wu and Akbarov, 2011; Sermpinis et al., 2017). In our case, all the 

LSVR structures regardless of the parameterization method are found to decrease forecast errors, the 

property that is also observed within the same class of models (e.g. SC-vSVR and SC-LSVR). Overall, 

this work provides insights to academics, researchers and policy makers on how heuristics and 

metaheuristics can benefit the calibration of sophisticated models, while the results highlight that the 

SVR parameterization is a crucial modelling aspect for the heuristics literature. This study could be 

further extended by incorporating bond spreads from the US and other developed countries and by 

investigating forecasting performance over different time horizons. 
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Appendix  

A. Predictors’ summary 

This appendix section provides some further information regarding the linear and non-linear models 

used to populate the individual forecast pools. The linear models used are SMA, EMA, AR and ARMA. 

Their specifications are provided in Table A.1. In total, the linear models’ forecasts sum up to 290. 

**Insert Table A.1** 

Except from the above non-linear models, this study utilizes also Smooth Transition Autoregressive 

(STAR) models as proposed by Chan and Tong (1986) and Lin and Teräsvirta (1994). More specifically, 

we estimate the logistic and exponential specification, namely the LSTAR and ESTAR for orders 1 to 

15. The STAR specifications combine two AR models with a function that defines the degree of non-

linearity (smooth transition function). For more mathematical details, see Lin and Teräsvirta (1994).   

The next non-linear model applied is the Nearest Neighbours (k-NN) inspired by the work of Fix and 

Hodges (1951). The intuition of the model is that past time series observations project patterns with 

resemblances to those of the future. Thus, the Euclidean distance is used to provide a sensitivity metric 

that transforms these patterns to nearest neighbours, which then are used to forecast the the immediate 

future. These neighbours are approximated by following the guidelines Dunis and Nathani (2007). 

This paper also incorporates individual forecasts obtained by five NN architectures. The first is the 

traditional MLP. The MLP structure is three-layered and follows the training principles of back-

propagation of errors and ‘early stopping’ explained by Shapiro (2000). For more information on MLPs 

refer to Stasinakis et al. (2016). The second NN is the RNN as proposed by Elman (1990). RNNs are 

extensions of the MLPs embodying an activation feedback offering short-term memory benefits (Tenti 

1996). The third NN model also included in the input set is the HONN. HONNs can achieve superior 

simulations due to their ability to adapt to data with higher frequencies and orders. For more information 

on HONNs see Dunis et al. (2011). The fourth NN structure applied in this study is the PSN as introduced 

by Ghosh and Shin (1991). PSNs are a class of feed-forward fully connected HONNs and combine fast 

learning abilities with powerful and computationally quicker mapping properties. For more information 

regarding the properties of PSN, practitioner should refer to Sermpinis et al. (2015). The last NN used 

is the ARBF-PSO. Compared to other NN structures, the ARBF-PSO utilizes the Particle Swarm 

Optimization (PSO) algorithm to optimize the weights/parameters. The PSO algorithm is a nature 

inspired heuristic search algorithm based on the flock behaviour of birds (Liang et al, 2006), offering 
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benefits in terms of over-fitting and data snooping bias. The complete description of the ARFB-PSO can 

be found in the work of Sermpinis et al. (2013). Table A.2 summarizes the learning algorithm, hidden 

and output node activation functions for all previous structures. 

**Insert Table A.2** 

 In general, there is no formalized process for selecting the NN inputs and their characteristics, such as 

number of hidden neurons, learning rate, momentum and iterations. In this study, we follow studies 

suggesting that a sensitivity analysis on a pool of autoregressive terms of all 10YGBS series in the in-

sample dataset (Tenti, 1996).  We start our experiments with 500 number of iterations to 100000 

(increasing the iterations by 500 at each experiment). Based on these experiments and the sensitivity 

analysis, the sets of variables selected are those that provide the higher statistical performance for each 

network in the in-sample period.   

The final two non-linear models of the input set are inspired by the Darwinian principle of survival of 

the fittest, namely the GP and GEP. GP is considered a class of GAs as explained in section 4.1. The GP 

algorithm is designed with a focus on limiting and optimizing the computation time and the ‘bloat effect’. 

Koza and Poli (2005) provide an extensive analysis of the GP structure. GEP is based on symbolic strings 

of fixed length that represent the genotype of an organism. Using GEP offers the safety to have lways 

valid expression trees generated, which is not always the case in GP. In general, GEP is considered 

superior to GP because fitness is established through the genotype and phenotype of an individual based 

on its chromosomes and expression trees respectively. The explanations of these terms and the GEP 

procedure can be found in Ferreira (2001). 

 

 B. Heuristic models’ technical characteristics 

In this appendix section we discuss some of the technical characteristics related to the heuristic models 

under study. Regarding the GA SVR models, we follow the guidelines of Sermpinis et al., (20015) where 

the parameter genes’ encoding is done by using 50 bits as follows: 

 10 bits to represent the integer part of parameter C of SVRs (range [0-1024])  

 10 bits to represent the decimal part of parameter C of SVRs (~ 0.001 precision) 

 10 bits to represent the integer part of the γ parameter of RBF functions (range [0-1024]) 

 10 bits to represent the decimal part of the γ parameter of RBF functions (~ 0.001 precision) 

 10 bits to represent the ν parameter of v-SVR (range [0-1] with ~ 0.001 precision) 

In the initial step, all genes are randomly set with values 0 or 1 with equal probabilities for both of them. 

The training characteristics for the GA and KH SVR models per forecasting exercise and country under 

study are shown in Table B.1. 

**Insert Table B.1** 

Figures B.1 and B.2 illustrate the pseudo codes of the KH and SC applied within the SVR structure 

respectively. 
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**Insert Figure B.1 and Figure B.2** 

C. Statistical performance measures. 

The statistical performance measures are calculated as shown in Table C.1. 

**Insert Table C.1** 

 

Tables 

Table 1: The government bond spreads under study 
 

Countries Description Frequency TICKER 

Greece Greece – Germany 10 year Government Bond Spread  Daily, Weekly .GDRDEM10 G 

Ireland Ireland – Germany 10 year Government Bond Spread  Daily, Weekly .IREDE10B G 

Italy Italy – Germany 10 year Government Bond Spread  Daily, Weekly .ITLDEM10 G 

Portugal Portugal – Germany 10 year Government Bond Spread  Daily, Weekly .PTEDEM10 G 

Spain Spain – Germany 10 year Government Bond Spread  Daily, Weekly .SPGER10 

Note: The source of the data is Bloomberg 

 

Table 2: Summary statistics 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: The table presents the descriptive statistics for each data frequency and sample period, along with the p-values 

of the Jarque-Bera and ADF test. 

 

Table 3: The total dataset and relevant forecasting exercises 

Periods Frequency Statistic Greece Ireland Italy Portugal Spain 

2000-2008 Daily 

Mean 0.0018 -0.0119 0.0019 0.0084 -0.0334 

Standard deviation 0.0605 2.1324 0.0484 0.7329 1.1547 

Skewness 8.5857 -8.9073 4.2741 29.1845 -31.1391 

Kurtosis 191.519 448.943 101.086 1427.389 1211.388 

Jarque-Bera (p value) 0.0000*** 0.0000*** 0.0000*** 0.0000*** 0.0000*** 

ADF (p value) 0.0000*** 0.0001*** 0.0001*** 0.0001*** 0.0001*** 

2000-2008 Weekly 

Mean 0.0064 -0.0441 0.0102 -0.0271 -0.0263 

Standard deviation 0.1098 2.0018 0.1275 0.7899 1.1143 

Skewness 4.5745 -3.5363 6.2124 -18.2436 1.3031 

Kurtosis 46.776 115.972 84.303 373.639 62.530 

Jarque-Bera  (p value) 0.0000*** 0.0000*** 0.0000*** 0.0000*** 0.0000*** 

ADF (p value) 0.0000*** 0.0000*** 0.0000*** 0.0001*** 0.0000*** 

2008-2017 Daily 

Mean 0.0019 0.0011 0.0023 0.0089 0.0019 

Standard deviation 0.0379 0.0397 0.0398 0.0396 0.0440 

Skewness -0.7905 -1.0698 0.5541 1.0387 0.3430 

Kurtosis 41.784 36.049 9.216 20.78450 12.732 

Jarque-Bera (p value) 0.0000*** 0.0000*** 0.0000*** 0.0000*** 0.0000*** 

ADF (p value) 0.0000*** 0.0000*** 0.0000*** 0.0000*** 0.0000*** 

2008-2017 Weekly 

Mean 0.0103 0.0064 0.0122 0.0099 0.0098 

Standard deviation 0.0981 0.0992 0.0928 0.1041 0.1058 

Skewness 0.7691 0.1341 0.6510 1.0352 1.3124 

Kurtosis 11.041 9.193 5.859 8.874 9.845 

Jarque-Bera  (p value) 0.0000*** 0.0000*** 0.0000*** 0.0000*** 0.0000*** 

ADF (p value) 0.0000*** 0.0000*** 0.0001*** 0.0000*** 0.0000*** 

FORECASTING 

EXERCISE 
PERIODS TRADING DAYS START DATE END DATE 

F1  

(Daily/ 2000-2008) 

Total Dataset 2348 03/01/2000 31/12/2008 

Training Dataset  1305 03/01/2000 30/12/2004 

Test Dataset 520 03/01/2005 29/12/2006 

Out-of-sample Dataset 523 01/01/2007 31/12/2008 

F2 

(Weekly/ 2000-2008) 

Total Dataset 469 07/01/2000 26/12/2008 

Training Dataset  261 07/01/2000 31/12/2004 

Test Dataset 104 07/01/2005 29/12/2006 

Out-of-sample Dataset 104 05/01/2007 26/12/2008 

F3 

(Daily/ 2008-2017) 

Total Dataset 2523 01/01/2008 31/08/2017 

Training Dataset  1305 01/01/2008 31/12/2012 
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Note: The in-sample periods are the sum of the training and test datasets. 

 

 

 

Table 4: The SVR sets of inputs  

 

 Greece Ireland Italy Portugal Spain 

F1 
AR(3), EMA(1), MLP, 

RNN, HONN, PSN 
SMA(1), ARMA(1,3), 

MLP, HONN, GP, GEP 
MLP, RNN, HONN, 
PSN, ARBF-PSO 

MLP, RNN, HONN, PSN, 
ARBF-PSO, k-NN 

LSTAR(2), ARMA(1,4), 

PSN, GP, GEP, ARBF-

PSO 

F2 
ARMA(3,4), MLP, 

RNN, ARBF-PSO 

EMA(3), ESTAR(6), 

MLP,  GP, GEP, 
ARBF-PSO 

AR(3), SMA(3), MLP, 

RNN, HONN, PSN, 

GP 

SMA(5), k-NN, MLP, 

RNN, PSN, GEP, ARBF-

PSO 

AR(5), ARMA(1,6), 
ARMA(3, 3), ESTAR(6), 

MLP HONN, PSN, GP, 

ARBF-PSO 

F3 

AR(2), SMA(4), 

EMA(3), MLP, RNN, 

PSN, GP, GEP 

k-NN, MLP, RNN, 
HONN, PSN 

MLP, RNN, PSN, 
ARBF-PSO 

AR(3), ARMA(4,6), 

HONN, GP, GEP, ARBF-

PSO, k-NN 

MLP, RNN, HONN, PSN, 
GP, GEP, ARBF-PSO 

F4 
ARMA(3,6), PSN, GP, 

GEP, ARBF-PSO 
MLP, RNN, PSN, 

ARBF-PSO 

AR(1), ARMA(1,2), 

MLP, PSN, GP, GEP, 

ARBF-PSO 

SMA(5), ARMA(4, 8), 
MLP, PSN, ARBF-PSO 

SMA(4), ESTAR(5), MLP, 
RNN, PSN, ARBF-PSO 

Note: The inputs in bold are the Best performing individual predictor in terms of statistical accuracy in the in-sample period of each forecasting 

exercise. These are used as benchmark models for the statistical analysis that follows. 

 

Table 5: Out-of-sample Statistical Performance (2000-2008) 

Test Dataset 522 01/01/2013 31/12/2014 

Out-of-sample Dataset 696 01/01/2015 31/08/2017 

F4 

(Weekly/ 2008-2017) 

Total Dataset 504 04/01/2008 25/08/2017 

Training Dataset  261 04/01/2008 28/12/2012 

Test Dataset 104 04/01/2013 26/12/2014 

Out-of-sample Dataset 139 02/01/2015 25/08/2017 

 Countries Statistic RW ARMA Best vSVR LSVR GA-vSVR GA-LSVR KH-vSVR KH-LSVR SC-vSVR SC-LSVR 

F1 

Greece 

MAE 0.0112 0.0112 0.0102 0.0098 0.0097 0.0094 0.0091 0.0088 0.0081 0.0076 0.0072 

RMSE 0.0123 0.0119 0.0102 0.0096 0.0093 0.0090 0.0090 0.0086 0.0084 0.0081 0.0079 

THEIL-U 1.0155 1.0115 0.9994 0.9985 0.9884 0.9759 0.9764 0.9605 0.9518 0.9410 0.9402 

Ireland 

MAE 0.0099 0.0095 0.0092 0.0088 0.0084 0.0080 0.0078 0.0074 0.0074 0.0070 0.0069 

RMSE 0.0096 0.0105 0.0097 0.0092 0.0090 0.0084 0.0082 0.0079 0.0076 0.0073 0.0073 

THEIL-U 1.0128 1.0185 1.0132 1.0081 0.9989 0.9945 0.9901 0.9845 0.9810 0.9775 0.9708 

Italy 

MAE 0.0102 0.0101 0.0092 0.0082 0.0081 0.0075 0.0072 0.0066 0.0062 0.0058 0.0054 

RMSE 0.0099 0.0094 0.0088 0.0086 0.0084 0.0084 0.0080 0.0072 0.0071 0.0064 0.0061 

THEIL-U 1.0085 0.9985 0.9930 0.9815 0.9749 0.9684 0.9602 0.9448 0.9094 0.8847 0.8648 

Portugal 

MAE 0.0125 0.0099 0.0096 0.0093 0.0093 0.0089 0.0085 0.0079 0.0078 0.0072 0.0068 

RMSE 0.00107 0.0098 0.0088 0.0081 0.0080 0.0075 0.0072 0.0069 0.0068 0.0064 0.0060 

THEIL-U 1.0280 1.0184 1.0165 1.0155 1.0085 0.9915 0.9945 0.9890 0.9884 0.9658 0.9614 

Spain 

MAE 0.0115 0.0112 0.0087 0.0086 0.0083 0.0079 0.0076 0.0067 0.0065 0.0062 0.0058 

RMSE 0.0097 0.0092 0.0087 0.0085 0.0084 0.0081 0.0075 0.0070 0.0067 0.0062 0.0059 

THEIL-U 1.0081 1.0074 0.9986 0.9958 0.9886 0.9748 0.9658 0.9458 0.9335 0.9225 0.9115 

F2 

Greece 

MAE 0.0110 0.0103 0.0099 0.0094 0.0092 0.0090 0.0091 0.0088 0.0085 0.0077 0.0075 

RMSE 0.0142 0.0140 0.0133 0.0105 0.0101 0.0098 0.0096 0.0095 0.0094 0.0090 0.0088 

THEIL-U 1.0165 1.0135 1.0122 1.0114 1.0105 1.0095 1.0025 0.9945 0.9801 0.9668 0.9610 

Ireland 

MAE 0.0097 0.0098 0.0095 0.0086 0.0087 0.0084 0.0081 0.0076 0.0075 0.0070 0.0067 

RMSE 0.0106 0.0102 0.0096 0.0094 0.0094 0.0091 0.0089 0.0087 0.0084 0.0081 0.0081 

THEIL-U 1.0215 1.0188 1.0168 1.0100 1.0089 1.0080 1.0054 1.0021 0.9994 0.9951 0.9749 

Italy 

MAE 0.0117 0.0119 0.0095 0.0088 0.0087 0.0081 0.0072 0.0069 0.0064 0.0060 0.0055 

RMSE 0.0119 0.0110 0.0102 0.0099 0.0097 0.0094 0.0092 0.0090 0.0085 0.0081 0.0078 

THEIL-U 1.0285 1.0185 1.0153 1.0102 1.0090 1.0070 1.0005 0.9965 0.9881 0.9746 0.9665 
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Note: Best is the best individual predictors in terms of statistical performance respectively in the in-sample period (as outlined in table 5). 

Table 6: Out-of-sample Statistical Performance (2008-2017) 

Note: Best is the best individual predictors in terms of statistical performance respectively in the in-sample period (as outlined in table 5). 

 

Table 7: DM and PT statistics 

Portugal 

MAE 0.0125 0.0121 0.0092 0.0090 0.0087 0.0084 0.0085 0.0082 0.0077 0.0071 0.0067 

RMSE 0.0208 0.0200 0.0194 0.0105 0.0097 0.0096 0.0095 0.0092 0.0091 0.0087 0.0084 

THEIL-U 1.0265 1.0205 1.0102 1.0095 1.0050 1.0041 0.9950 0.9910 0.9842 0.9716 0.9654 

Spain 

MAE 0.0113 0.0108 0.0089 0.0084 0.0081 0.0079 0.0074 0.0068 0.0064 0.0060 0.0058 

RMSE 0.0207 0.0209 0.0112 0.0095 0.0084 0.0084 0.0083 0.0081 0.0079 0.0074 0.0070 

THEIL-U 1.0119 1.0105 1.0085 1.0021 0.9980 0.9841 0.9749 0.9664 0.9620 0.9558 0.9432 

 Countries Statistic RW ARMA Best vSVR LSVR GA-vSVR GA-LSVR KH-vSVR KH-LSVR SC-vSVR SC-LSVR 

F3 

Greece 

MAE 0.0185 0.0179 0.0177 0.0170 0.0164 0.0138 0.0120 0.0118 0.0109 0.0102 0.0097 

RMSE 0.0274 0.0258 0.0241 0.0217 0.0208 0.0198 0.0194 0.0189 0.0173 0.0149 0.0125 

THEIL-U 1.0123 1.0100 0.9981 0.9971 0.9804 0.9741 0.9730 0.9499 0.9418 0.9337 0.9314 

Ireland 

MAE 0.0166 0.0185 0.0180 0.0155 0.0142 0.0128 0.0115 0.0109 0.0102 0.0095 0.0095 

RMSE 0.0214 0.0195 0.0186 0.0167 0.0156 0.0133 0.0129 0.0124 0.0118 0.0107 0.0103 

THEIL-U 1.0108 1.0089 1.0074 0.9948 0.9947 0.9853 0.9810 0.9740 0.9612 0.9441 0.9226 

Italy 

MAE 0.0166 0.0136 0.0128 0.0099 0.0096 0.0095 0.0092 0.0090 0.0087 0.0086 0.0084 

RMSE 0.0245 0.0218 0.0207 0.0158 0.0117 0.0102 0.0097 0.0095 0.0093 0.0090 0.0087 

THEIL-U 1.0053 0.9990 0.9964 0.9758 0.9551 0.9564 0.9234 0.9015 0.8994 0.8842 0.8445 

Portugal 

MAE 0.0140 0.0142 0.0128 0.0110 0.0108 0.0102 0.0100 0.0098 0.0096 0.0094 0.0090 

RMSE 0.0195 0.0144 0.0132 0.0151 0.0124 0.0119 0.0109 0.0108 0.0102 0.0097 0.0095 

THEIL-U 1.0245 1.0123 1.0099 0.9964 0.9954 0.9941 0.9807 0.9800 0.9718 0.9515 0.9515 

Spain 

MAE 0.0144 0.0128 0.0120 0.0101 0.0098 0.0095 0.0094 0.0090 0.0087 0.0084 0.0083 

RMSE 0.0189 0.0180 0.0152 0.0140 0.0110 0.0105 0.0102 0.0097 0.0096 0.0095 0.0090 

THEIL-U 0.9940 0.9841 0.9784 0.9664 0.9752 0.9728 0.9514 0.9228 0.9207 0.9112 0.9015 

F4 

Greece 

MAE 0.0188 0.0189 0.0184 0.0180 0.0176 0.0171 0.0164 0.0150 0.0144 0.0131 0.0128 

RMSE 0.0299 0.0266 0.0258 0.235 0.0225 0.0201 0.0195 0.0184 0.0172 0.0166 0.0158 

THEIL-U 1.0153 1.0105 0.9984 0.9980 0.9854 0.9801 0.9745 0.9551 0.9550 0.9447 0.9401 

Ireland 

MAE 0.0160 0.0185 0.0183 0.0150 0.0142 0.0132 0.0118 0.0115 0.0105 0.0102 0.0099 

RMSE 0.0221 0.0201 0.0194 0.0171 0.0162 0.0155 0.0149 0.0130 0.0121 0.0118 0.0107 

THEIL-U 1.0180 1.0165 1.0140 1.0094 0.9988 0.9970 0.9815 0.9790 0.9715 0.9518 0.9348 

Italy 

MAE 0.0188 0.0154 0.0108 0.0097 0.0094 0.0092 0.0089 0.0085 0.0086 0.0082 0.0084 

RMSE 0.0245 0.0233 0.0207 0.0158 0.0117 0.0102 0.0097 0.0095 0.0093 0.0088 0.0088 

THEIL-U 1.0253 1.0085 0.9842 0.9809 0.9779 0.9713 0.9664 0.9624 0.9557 0.9411 0.9335 

Portugal 

MAE 0.0126 0.0119 0.0118 0.0113 0.0111 0.0097 0.0095 0.0091 0.0087 0.0085 0.0085 

RMSE 0.0195 0.0155 0.0132 0.0151 0.0124 0.0119 0.0109 0.0108 0.0102 0.0097 0.0095 

THEIL-U 1.0335 1.0254 1.0147 1.0106 1.0089 1.0074 0.9887 0.9748 0.9700 0.9674 0.9531 

Spain 

MAE 0.0104 0.0121 0.0102 0.0098 0.0095 0.0094 0.0088 0.0085 0.0084 0.0080 0.0078 

RMSE 0.0149 0.0167 0.0134 0.0120 0.0113 0.0105 0.0099 0.0096 0.0093 0.0092 0.0087 

THEIL-U 1.0084 1.0080 0.9841 0.9745 0.9730 0.9505 0.9501 0.9488 0.9416 0.9338 0.9228 

 Countries RW ARMA Best vSVR LSVR GA-vSVR GA-LSVR KH-vSVR KH-LSVR SC-vSVR SC-LSVR 

F1 Greece 
-10.22 -9.44 -8.33 -8.87 -7.54 -6.99 -6.15 -6.05 -5.48 -1.17 - 

1.25 1.35 1.88 3.15 4.28 5.36 7.48 8.12 9.15 9.99 10.22 
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Note: For every country, the first and second raw reports the DM and PT statistics respectively. The top left value corresponds to the DM statistics 

between the SC-LSVR and RW forecast. Every value and absolute value higher than 1.96 indicates significance of 5% for the PT and DM test 

respectively. The bold values are found insignificant at 5%. 

 

Table A.1: The specification of the linear models 

LINEAR MODELS DESCRIPTION 
TOTAL INDIVIDUAL 

 FORECASTS 

Ireland 
-9.45 -8.18 -8.08 -7.13 -7.02 -6.77 -6.28 -6.01 -5.19 -4.25 - 

1.90 1.93 3.14 5.55 6.328 7.19 8.20 9.05 10.18 11.56 12.15 

Italy 
-12.22 -10.48 -10.36 -10.02 -8.99 -7.14 -6.29 -5.84 -5.37 -5.08 - 

3.45 3.68 4.23 5.10 6.22 7.19 8.13 8.57 9.08 9.66 11.28 

Portugal 
-10.33 -10.48 -9.99 -9.16 -8.19 -7.45 -6.22 -5.41 -4.27 -1.57 - 

2.15 3.08 3.99 4.28 5.66 6.08 7.14 7.79 8.19 8.54 9.63 

Spain 
-8.86 -8.99 -8.12 -7.49 -6.80 -6.54 -5.84 -5.13 -4.08 -4.01 - 

2.99 3.02 3.25 4.20 5.64 5.69 6.36 7.12 7.86 8.59 8.97 

F2 

Greece 
-11.42 -11.01 -10.25 -9.85 -8.79 -8.42 -7.15 -6.88 -5.32 -4.12 - 

1.15 2.18 4.42 4.99 6.16 7.22 7.36 8.54 8.93 9.68 10.35 

Ireland 
-13.45 -12.32 -12.48 -10.48 -9.84 -8.47 -5.18 -5.07 -4.87 -3.22 - 

3.63 3.63 4.09 5.28 5.97 6.50 7.53 7.86 8.84 9.08 10.55 

Italy 
-11.28 -10.99 -10.68 -9.45 -7.59 -6.60 -5.49 -3.28 -2.98 -2.78 - 

1.08 3.14 5.03 5.55 .64 6.99 7.05 7.66 8.45 9.55 11.02 

Portugal 
-15.12 -14.44 -13.37 -10.78 -9.67 -8.87 -8.06 -7.34 -5.61 -3.37 - 

5.53 5.17 5.68 6.61 6.88 7.15 7.28 8.44 8.97 10.18 11.22 

Spain 
-13.66 -12.99 -12.54 -11.77 -10.20 -9.98 -9.16 -9.04 -8.14 -7.74 - 

2.89 4.19 5.23 6.84 7.19 7.66 7.67 7.89 7.95 8.19 9.65 

F3 

Greece 
-18.45 -17.60 -17.25 -15.23 -14.10 -12.08 -9.88 -8.47 -8.13 -6.55 - 

1.94 2.15 3.02 4.48 6.08 7.15 9.45 8.88 10.28 11.19 11.39 

Ireland 
-16.22 -14.55 -13.48 -10.47 -10.08 -8.84 -8.09 -7.41 -5.64 -1.22 - 

3.56 3.07 3.48 5.15 6.48 6.89 9.08 9.85 9.05 10.36 11.53 

 

Italy 
-15.05 -12.86 -17.10 -14.17 -12.33 -10.42 -9.41 -9.03 -8.84 -8.07 - 

4.45 4.87 5.12 5.66 6.38 6.87 7.89 7.95 8.15 9.45 10.35 

Portugal 
-10.10 -10.30 -10.38 -9.91 -9.73 -9.06 -8.45 -8.17 -7.14 -4.22 - 

3.33 -3.49 3.85 4.42 5.25 6.03 6.88 7.45 7.96 8.45 9.60 

Spain 
-9.45 -9.79 -9.40 -8.87 -8.05 -7.33 -7.18 -6.28 -5.57 -3.36 - 

2.96 3.47 3.45 3.86 3.49 5.58 7.28 8.05 8.49 9.72 9.86 

F4 

Greece 
-10.18 -10.35 -9.99 -9.55 -9.31 -8.08 -7.15 -6.35 -4.28 -3.01 - 

0.85 1.56 2.86 3.44 4.25 4.48 5.06 6.18 6.66 7.45 8.93 

Ireland 
-13.28 -12.47 -11.27 -10.29 -9.97 -9.49 -9.30 -8.14 -7.01 -4.14 - 

4.28 4.10 4.59 5.61 5.97 6.08 6.79 7.08 7.19 7.90 8.45 

Italy 
-8.87 -9.07 -8.42 -7.56 -6.17 -5.55 -5.02 -4.84 -4.51 -2.95 - 

3.06 3.14 3.28 3.66 3.97 4.55 4.29 6.64 6.67 7.42 8.01 

Portugal 
-11.03 -11.59 -11.08 -10.47 -10.22 -8.47 -7.55 -7.10 -6.33 -5.15 - 

4.44 4.90 5.18 6.04 6.87 7.79 7.86 8.84 8.94 9.08 10.25 

Spain 
-10.14 -9.87 -9.25 -8.83 -8.02 -7.14 -5.37 -4.12 -3.84 -1.09 - 

3.56 4.10 4.22 5.36 6.77 7.05 7.14 8.99 9.62 10.12 12.24 
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SMA (q) 
1( ) ( ... ) /t t t qE R R R q     

Where: 

 q=3...30 

 

28 

EMA (q') 

q' 1

1 2 '

q' 1

(1 ') ... (1 ')
( )

' (1 ') ... (1 ')

t t t q

t

R a R a R
E R

a a a



  



    


    
 

 Where: 

 q'=3...30 

 a'=2/(1+Ndays), Ndays is the number trading days 
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AR (q'') 

0

1

''

( )t i t i

i

q

E R R   


   

Where: 

 q''=1,…,24  

 
0 , i    the regression coefficients  

 

24 

ARMA (m', n') 

0 0

1 1

( )
m n

t j t j k t k

j k

E R R a w a 
 

    
  

      

Where:  

 m', n'=1,..,15 

 
0, j  

 the regression coefficients  

 0 , t ka a   the residual terms  

 kw   the weights of the residual terms 
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Note: The total number of individual inputs calculated is 329 

 

Table A.2: Neural Network Design and Training Characteristics 

Note: The input of every node is zψ, where ψ = 1… n'' and n'' is the number of nodes of the previous layer. The vector indicating the center of the Gaussian 

function is C' and σ' is the value indicating its width. 

 

Table B.1: GA and KH training characteristics 

PARAMETERS MLP RNN HONN PSN ARBF-PSO 

Learning 

algorithm 
Gradient descent Gradient descent Gradient descent Gradient descent Particle Swarm Optimization 

Initialisation  

of weights 
N(0,1) N(0,1) N(0,1) N(0,1) - 

Hidden node  

activation 

function 

( ) 1/ (1 )
z

F z e 




   ( ) 1/ (1 )

z
F z e 




   ( ) 1/ (1 )

z
F z e 




   

''

1

( )
n

F z z 
 


 

2

2

'
F( ) exp

2 '

z C
z






 
 
 
 

 

Output node  

activation 

function 

''

1

( )
n

F z z 
 


 

''

1

( )
n

F z z 
 


 

''

1

( )
n

F z z 
 


 

( ) 1/ (1 )
z

F z e 




 

 
''

1

( )
n

F z z 
 


 

Countries GA KH  

  F1 F2 F3 F4 Forecasting Exercise F1 F2 F3 F4 

 

Greece 

Population Size 60 60 60 60 Population Size 60 60 60 60 

Maximum 

Generations 
800 800 800 800 Δt , Zcr 

15.25, 

0.61 

20.38, 

0.47 

14.25, 

0.94 

20.32, 

0.66 

 

Ireland 

Population Size 80 80 80 80 Population Size 80 80 80 80 

Maximum 

Generations 
1000 1000 1000 1000 Δt , Zcr 

10.44, 

0.45 

32.04, 

0.85 

18.01, 

0.85 

20.38, 

0.68 

 

Italy 

Population Size 50 50 50 50 Population Size 50 50 50 50 

Maximum 

Generations 
1000 1000 1000 1000 Δt , Zcr 

21.33, 

0.49 

11.48, 

0.79 

21.14, 

0.44 

20.10, 

0.62 

 

Portugal 

Population Size 80 80 80 80 Population Size 80 80 80 80 

Maximum 

Generations 
500 500 500 500 Δt , Zcr 

18.47, 

0.77 

10.14, 

0.42 

21.96, 

0.36 

19.57, 

0.81 

 

Spain 

Population Size 75 75 75 75 Population Size 75 75 75 75 

Maximum 

Generations 
900 900 900 900 Δt , Zcr 

14.53, 

0.87 

22.15, 

0.86 

14.58, 

0.72 

21.44, 

0.47 

 

 

 

Selection Type Roulette Wheel Selection Foraging Speed 0.02 ms-1 

Elitism 
Best individual is kept in the 

next generation. 
Maximum 

Motion Speed 
0.01 ms-1 
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Note: The same population size and generations per forecasting exercise and country are applied to the SC training 

 

Table C.1: Statistical performance measures 

 

 

Figures 

Figure 1: Eurozone periphery government bond spreads to German Bund 

 

 Note: Out-of-sample forecasting accuracy is calculated within the periods 2007-2008 and 2015- end of August 2017. 
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Crossover 

Probability 
0.9 

Maximum 

Diffusion Speed 
[0.002, 0.010] ms-1 

Mutation 

Probability 
0.1 Inertia Weights [0,1] 

STATISTICAL PERFOMANCE MEASURES DESCRIPTION 

Mean Absolute Error 1

1
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t N

t

MAE E R Y
N

 




 

 

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 with Y being the actual value and ( )E R
 the forecasted value and N  

the number of forecasts 

Root Mean Squared Error 
2

1

1
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t N

t
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Figure 2: The flowcharts of i) GA-vSVR and ii) KH-LSVR 
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Figure 3: Sine Cosine algorithm in defining positions in the search space 

 
Note: On the left hand side, the black and grey dot is the current solution and the destination position, respectively. The next 

position will be the inner (outer) circle for 
1 1( 1)r  . The sine and cosine within the range [−2,2] allow a solution to go 

around (inside the space between them) or beyond (outside the space between them) the destination. It is illustrated this 

equation decreases the range of sine and cosine functions over the course of iterations, as the SC algorithm explores the 

search space when the ranges of sine and cosine functions are in (1,2] and [-2, -1). The search space is exploited when the 

ranges are in the interval of [-1,1] (Mirjalili, 2018). 

 

Figure B.1: KH algorithm pseudo-code 

 

 

 

 

 

 

 

 

 

 

 

 

BEGIN 

 Step 1: Initialization 

Initialize the generation counter GEN, the population of Nk krill randomly, VF, Dmax and RDmax. 

Step 2: Fitness calculation 

 Calculate fitness for each krill according to its initial position Pj. 

Step 3: While GEN < maximum generation criterion 

  Sort the population according to their fitness. 

  For j=1: Nk (all krill) do 

   Perform the following motion calculations: 

    Motion induced by other individuals (Mj) 

    Foraging motion (Fj) 

    Random Diffusion motion (RDj) 

   Implement the genetic operators. 

   Update the krill position in the search space. 

Calculate fitness for each krill according to its new position. 

   End for j 

   GEN=GEN+1 

Step 4: End While 

END 
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Figure B.2: SC algorithm  pseudo-code

 

 

 

 


