3,901 research outputs found
Accuracy of dielectric-dependent hybrid functionals in the prediction of optoelectronic properties of metal oxide semiconductors: a comprehensive comparison with many-body GW and experiments
Understanding the electronic structure of metal oxide semiconductors is crucial to their numerous technological applications, such as photoelectrochemical water splitting and solar cells. The needed experimental and theoretical knowledge goes beyond that of pristine bulk crystals, and must include the effects of surfaces and interfaces, as well as those due to the presence of intrinsic defects (e.g. oxygen vacancies), or dopants for band engineering. In this review, we present an account of the recent efforts in predicting and understanding the optoelectronic properties of oxides using ab initio theoretical methods. In particular, we discuss the performance of recently developed dielectric-dependent hybrid functionals, providing a comparison against the results of many-body GW calculations, including G 0 W 0 as well as more refined approaches, such as quasiparticle self-consistent GW. We summarize results in the recent literature for the band gap, the band level alignment at surfaces, and optical transition energies in defective oxides, including wide gap oxide semiconductors and transition metal oxides. Correlated transition metal oxides are also discussed. For each method, we describe successes and drawbacks, emphasizing the challenges faced by the development of improved theoretical approaches. The theoretical section is preceded by a critical overview of the main experimental techniques needed to characterize the optoelectronic properties of semiconductors, including absorption and reflection spectroscopy, photoemission, and scanning tunneling spectroscopy (STS)
Recommended from our members
Surface and interstitial Ti diffusion at the rutile TiO2(110) surface
Diffusion of Ti through the TiO2 (110) rutile surface plays a key role in the growth and reactivity of TiO2. To understand the fundamental aspects of this important process, we present an analysis of the diffusion of Ti adspecies at the stoichiometric TiO2(110) surface using complementary computational methodologies of density functional theory corrected for on-site Coulomb interactions (DFT+U) and a charge equilibration (QEq) atomistic potential to identify minimum energy pathways. We find that diffusion of Ti from the surface to subsurface (and vice versa) follows an intersticialcy exchange mechanism, involving exchange of surface Ti with the 6-fold coordinated Ti below the bridging oxygen rows. Diffusion in the subsurface between layers also follows an interstitialcy mechanism. The diffusion of Ti is discussed in light of continued attempts
to understand the re-oxidation of non-stoichiometric TiO2(110) surfaces
Nitrogen doping of TiO2 photocatalyst forms a second eg state in the Oxygen (1s) NEXAFS pre-edge
Close inspection of the pre-edge in oxygen near-edge x-ray absorption fine
structure spectra of single step, gas phase synthesized titanium oxynitride
photocatalysts with 20 nm particle size reveals an additional eg resonance in
the VB that went unnoticed in previous TiO2 anion doping studies. The relative
spectral weight of this Ti(3d)-O(2p) hybridized state with respect to and
located between the readily established t2g and eg resonances scales
qualitatively with the photocatalytic decomposition power, suggesting that this
extra resonance bears co-responsibility for the photocatalytic performance of
titanium oxynitrides at visible light wavelengths
A Medium-Resolution Near-Infrared Spectral Library of Late Type Stars: I
We present an empirical infrared spectral library of medium resolution
(R~2000-3000) H (1.6 micron) and K (2.2 micron) band spectra of 218 red stars,
spanning a range of [Fe/H] from ~-2.2 to ~+0.3. The sample includes Galactic
disk stars, bulge stars from Baade's window, and red giants from Galactic
globular clusters. We report the values of 19 indices covering 12 spectral
features measured from the spectra in the library. Finally, we derive
calibrations to estimate the effective temperature, and diagnostic
relationships to determine the luminosity classes of individual stars from
near-infrared spectra.
This paper is part of a larger effort aimed at building a near-IR spectral
library to be incorporated in population synthesis models, as well as, at
testing synthetic stellar spectra.Comment: 34 pages, 12 figures; accepted for publication at ApJS; the spectra
are available from the authors upon reques
Reconciliation of essential process parameters for an enhanced predictability of Arctic stratospheric ozone loss and its climate interactions
Significant reductions in stratospheric ozone occur inside the polar vortices each spring when chlorine radicals produced by heterogeneous reactions on cold particle surfaces in winter destroy ozone mainly in two catalytic cycles, the ClO dimer cycle and the ClO/BrO cycle. Chlorofluorocarbons (CFCs), which are responsible for most of the chlorine currently present in the stratosphere, have been banned by the Montreal Protocol and its amendments, and the ozone layer is predicted to recover to 1980 levels within the next few decades. During the same period, however, climate change is expected to alter the temperature, circulation patterns and chemical composition in the stratosphere, and possible geo-engineering ventures to mitigate climate change may lead to additional changes. To realistically predict the response of the ozone layer to such influences requires the correct representation of all relevant processes. The European project RECONCILE has comprehensively addressed remaining questions in the context of polar ozone depletion, with the objective to quantify the rates of some of the most relevant, yet still uncertain physical and chemical processes. To this end RECONCILE used a broad approach of laboratory experiments, two field missions in the Arctic winter 2009/10 employing the high altitude research aircraft M55-Geophysica and an extensive match ozone sonde campaign, as well as microphysical and chemical transport modelling and data assimilation. Some of the main outcomes of RECONCILE are as follows: (1) vortex meteorology: the 2009/10 Arctic winter was unusually cold at stratospheric levels during the six-week period from mid-December 2009 until the end of January 2010, with reduced transport and mixing across the polar vortex edge; polar vortex stability and how it is influenced by dynamic processes in the troposphere has led to unprecedented, synoptic-scale stratospheric regions with temperatures below the frost point; in these regions stratospheric ice clouds have been observed, extending over >106km2 during more than 3 weeks. (2) Particle microphysics: heterogeneous nucleation of nitric acid trihydrate (NAT) particles in the absence of ice has been unambiguously demonstrated; conversely, the synoptic scale ice clouds also appear to nucleate heterogeneously; a variety of possible heterogeneous nuclei has been characterised by chemical analysis of the non-volatile fraction of the background aerosol; substantial formation of solid particles and denitrification via their sedimentation has been observed and model parameterizations have been improved. (3) Chemistry: strong evidence has been found for significant chlorine activation not only on polar stratospheric clouds (PSCs) but also on cold binary aerosol; laboratory experiments and field data on the ClOOCl photolysis rate and other kinetic parameters have been shown to be consistent with an adequate degree of certainty; no evidence has been found that would support the existence of yet unknown chemical mechanisms making a significant contribution to polar ozone loss. (4) Global modelling: results from process studies have been implemented in a prognostic chemistry climate model (CCM); simulations with improved parameterisations of processes relevant for polar ozone depletion are evaluated against satellite data and other long term records using data assimilation and detrended fluctuation analysis. Finally, measurements and process studies within RECONCILE were also applied to the winter 2010/11, when special meteorological conditions led to the highest chemical ozone loss ever observed in the Arctic. In addition to quantifying the 2010/11 ozone loss and to understand its causes including possible connections to climate change, its impacts were addressed, such as changes in surface ultraviolet (UV) radiation in the densely populated northern mid-latitudes
Quasiparticle interfacial level alignment of highly hybridized frontier levels: HO on TiO(110)
Knowledge of the frontier levels' alignment prior to photo-irradiation is
necessary to achieve a complete quantitative description of HO
photocatalysis on TiO(110). Although HO on rutile TiO(110) has been
thoroughly studied both experimentally and theoretically, a quantitative value
for the energy of the highest HO occupied levels is still lacking. For
experiment, this is due to the HO levels being obscured by hybridization
with TiO(110) levels in the difference spectra obtained via ultraviolet
photoemission spectroscopy (UPS). For theory, this is due to inherent
difficulties in properly describing many-body effects at the
HO-TiO(110) interface. Using the projected density of states (DOS) from
state-of-the-art quasiparticle (QP) , we disentangle the adsorbate and
surface contributions to the complex UPS spectra of HO on TiO(110). We
perform this separation as a function of HO coverage and dissociation on
stoichiometric and reduced surfaces. Due to hybridization with the TiO(110)
surface, the HO 3a and 1b levels are broadened into several peaks
between 5 and 1 eV below the TiO(110) valence band maximum (VBM). These
peaks have both intermolecular and interfacial bonding and antibonding
character. We find the highest occupied levels of HO adsorbed intact and
dissociated on stoichiometric TiO(110) are 1.1 and 0.9 eV below the VBM. We
also find a similar energy of 1.1 eV for the highest occupied levels of HO
when adsorbed dissociatively on a bridging O vacancy of the reduced surface. In
both cases, these energies are significantly higher (by 0.6 to 2.6 eV) than
those estimated from UPS difference spectra, which are inconclusive in this
energy region. Finally, we apply self-consistent QP (scQP1) to obtain
the ionization potential of the HO-TiO(110) interface.Comment: 12 pages, 12 figures, 1 tabl
Cerium-doped zirconium dioxide, a visible-light-sensitive photoactive material of third generation
The dispersion of small amounts of Ce4+ ions in the bulk of ZrO2 leads to a photoactive material sensitive to visible light. This is shown by monitoring with EPR the formation and the reactivity of photogenerated (lambda > 420 nm) charge carriers. The effect, as confirmed by DFT calculations, is due to the presence in the solid of empty 4f Ce states at the mid gap, which act as intermediate levels in a double excitation mechanism. This solid can be considered an example of a third-generation photoactive material
Paramagnetic defects in polycrystalline zirconia: An EPR and DFT study
The paramagnetic defects present in pristine zirconium dioxide (ZrO2) and those formed upon reductive treatments (either annealing or UV irradiation in H-2) are described and rationalized by the joint use of electron paramagnetic resonance (EPR) and DFT supercell calculations. Three types of Zr3+ reduced sites have been examined both in the bulk of the solid (one center) and at the surface (two centers). Trapping electron centers different from reduced Zr ions are also present, whose concentration increases upon annealing. A fraction of these sites are paramagnetic showing a symmetric signal at g = 2.0023, but the majority of them are EPR silent and are revealed by analysis of electron transfer from the reduced solid to oxygen. The presence of classic F-type centers (electrons in bulk oxygen vacancies) is disregarded on the basis of the g-tensor symmetry. This is expected, on the basis of theoretical calculations, to be anisotropic and thus incompatible with the observed signal. In general terms, ZrO2 has Some properties similar to typical reducible oxides, such as TiO2 and CeO2 (excess electrons stabilized at cationic sites), but it is much more resistant to reduction than this class of materials. While point defects in doped (Y3+, Ca2+) ZrO2 materials have been widely investigated for their role as ionic conductors, the defectivity of pristine ZrO2 is much less known; this paper presents a thorough analysis of this phenomenon
Reconciliation of essential process parameters for an enhanced predictability of Arctic stratospheric ozone loss and its climate interactions : (RECONCILE) ; activities and results
The international research project RECONCILE has addressed central questions regarding polar ozone depletion, with the objective to quantify some of the most relevant yet still uncertain physical and chemical processes and thereby improve prognostic modelling capabilities to realistically predict the response of the ozone layer to climate change. This overview paper outlines the scope and the general approach of RECONCILE, and it provides a summary of observations and modelling in 2010 and 2011 that have generated an in many respects unprecedented dataset to study processes in the Arctic winter stratosphere. Principally, it summarises important outcomes of RECONCILE including (i) better constraints and enhanced consistency on the set of parameters governing catalytic ozone destruction cycles, (ii) a better understanding of the role of cold binary aerosols in heterogeneous chlorine activation, (iii) an improved scheme of polar stratospheric cloud (PSC) processes that includes heterogeneous nucleation of nitric acid trihydrate (NAT) and ice on non-volatile background aerosol leading to better model parameterisations with respect to denitrification, and (iv) long transient simulations with a chemistry-climate model (CCM) updated based on the results of RECONCILE that better reproduce past ozone trends in Antarctica and are deemed to produce more reliable predictions of future ozone trends. The process studies and the global simulations conducted in RECONCILE show that in the Arctic, ozone depletion uncertainties in the chemical and microphysical processes are now clearly smaller than the sensitivity to dynamic variability
Caveolae in Rabbit Ventricular Myocytes: Distribution and Dynamic Diminution after Cell Isolation
Caveolae are signal transduction centers, yet their subcellular distribution and preservation in cardiac myocytes after cell isolation are not well documented. Here, we quantify caveolae located within 100 nm of the outer cell surface membrane in rabbit single-ventricular cardiomyocytes over 8 h post-isolation and relate this to the presence of caveolae in intact tissue. Hearts from New Zealand white rabbits were either chemically fixed by coronary perfusion or enzymatically digested to isolate ventricular myocytes, which were subsequently fixed at 0, 3, and 8 h post-isolation. In live cells, the patch-clamp technique was used to measure whole-cell plasma membrane capacitance, and in fixed cells, caveolae were quantified by transmission electron microscopy. Changes in cell-surface topology were assessed using scanning electron microscopy. In fixed ventricular myocardium, dual-axis electron tomography was used for three-dimensional reconstruction and analysis of caveolae in situ. The presence and distribution of surface-sarcolemmal caveolae in freshly isolated cells matches that of intact myocardium. With time, the number of surface-sarcolemmal caveolae decreases in isolated cardiomyocytes. This is associated with a gradual increase in whole-cell membrane capacitance. Concurrently, there is a significant increase in area, diameter, and circularity of sub-sarcolemmal mitochondria, indicative of swelling. In addition, electron tomography data from intact heart illustrate the regular presence of caveolae not only at the surface sarcolemma, but also on transverse-tubular membranes in ventricular myocardium. Thus, caveolae are dynamic structures, present both at surface-sarcolemmal and transverse-tubular membranes. After cell isolation, the number of surface-sarcolemmal caveolae decreases significantly within a time frame relevant for single-cell research. The concurrent increase in cell capacitance suggests that membrane incorporation of surface-sarcolemmal caveolae underlies this, but internalization and/or micro-vesicle loss to the extracellular space may also contribute. Given that much of the research into cardiac caveolae-dependent signaling utilizes isolated cells, and since caveolae-dependent pathways matter for a wide range of other study targets, analysis of isolated cell data should take the time post-isolation into account
- …
