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Abstract
Understanding the electronic structure of metal oxide semiconductors is crucial to their 
numerous technological applications, such as photoelectrochemical water splitting and solar 
cells. The needed experimental and theoretical knowledge goes beyond that of pristine bulk 
crystals, and must include the effects of surfaces and interfaces, as well as those due to 
the presence of intrinsic defects (e.g. oxygen vacancies), or dopants for band engineering. 
In this review, we present an account of the recent efforts in predicting and understanding 
the optoelectronic properties of oxides using ab initio theoretical methods. In particular, 
we discuss the performance of recently developed dielectric-dependent hybrid functionals, 
providing a comparison against the results of many-body GW calculations, including G0W0 
as well as more refined approaches, such as quasiparticle self-consistent GW. We summarize 
results in the recent literature for the band gap, the band level alignment at surfaces, and 
optical transition energies in defective oxides, including wide gap oxide semiconductors 
and transition metal oxides. Correlated transition metal oxides are also discussed. For 
each method, we describe successes and drawbacks, emphasizing the challenges faced by 
the development of improved theoretical approaches. The theoretical section is preceded 
by a critical overview of the main experimental techniques needed to characterize the 
optoelectronic properties of semiconductors, including absorption and reflection spectroscopy, 
photoemission, and scanning tunneling spectroscopy (STS).
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1. Introduction

The importance of controlling the physical properties of oxide 
materials for present and future energy, optoelectronic and 
environmental technologies can hardly be overemphasized. 
The technological versatility of these materials is in fact out-
standing. To name only a few examples relevant to renewable 
energy technologies, several metal oxide compounds have 
been suggested as promising materials to be used as photoab-
sorbers and cocatalysts for solar driven water splitting [1, 2], 
as photoanodes for dye sensitized solar cells [3], as well as in 
catalysis, where they can be employed both as active catalysts 
directly participating in the redox reactions and as inert sup-
ports for other catalysts such as metal nanoparticles [4]. The 
broad technological applicability of metal oxide materials, 
and particularly of oxide semiconductors, is made possible by 
their peculiar optoelectronic properties (facilitating e.g. light 
absorption and charge separation at energy scales relevant to 
redox reactions), as well as their chemical reactivity, which 
is enhanced by the presence of metal cations that can readily 
change their oxidation state, an important requirement for 
redox and charge transfer reactions to occur.

From a theoretical perspective, describing physical pro-
cesses relevant to energy conversion technologies brings 
about several challenges. The first challenge is related to the 
heterogeneity of energy conversion materials systems, which 
may be represented, for example, by an interface between an 
oxide semiconductor and an electrolyte in the case of a pho-
toelectrochemical cell for water splitting. How would one be 
able to describe, for example, the electronic structure (i.e. the 
level alignment between the semiconductor band edges and 
the redox potentials of the electrolyte) at the interface between 
two such chemically diverse systems, using a single, nonem-
pirical, and accurate quantum mechanical approach? Another 
challenge is represented by the necessity of describing phys-
ical processes occurring at very different time and energy 
scales, such as light absorption and the consequent charge 
carrier generation in the semiconductor (the relevant time and 
energy scales being that of femtoseconds and electronvolts), 
and charge transfer at the solid–liquid interface promoted by 
atomic motion at room temperature (i.e. on the millielectron-
volt energy scale) over typical time scales of the order of the 
picosecond and up to the nanosecond.

If one is interested in studying large heterogeneous sys-
tems such as solid–liquid interfaces, the use of sophisti-
cated theoretical methods, such as many-body perturbation 
theory to compute the electronic structure, is often ham-
pered by the high computational cost. One may then adopt 
approximate approaches in which the semiconductor and the 
liquid are treated separately at appropriate levels of theory, 
starting from the most basic density functional theory (DFT) 

approximations; their interaction may then be described a 
posteriori, treating solvation effects at different levels of acc-
uracy, making use, e.g. of continuum solvation models [5–7]. 
These problems constitute the frontier of today’s research in 
computational materials science [8], and are of great relevance 
to many applications, including catalysis and photocatalysis 
[9]. Often, however, the validation of a computational meth-
odology for such complex systems is complicated by the lack 
of clean experimental data and the related difficulty of con-
structing realistic structural models for computational studies; 
moreover, defining physical quantities which may be easily 
compared against experimental data is not always straight-
forward for such complex systems. The validation problem 
indeed constitutes a third big challenge.

Even putting aside the complicacies related to materials 
heterogeneity, the task of computing accurate optoelectronic 
properties of oxide materials is far from trivial, although in 
this case the choice of the physical observables to be com-
pared between theory and experiment can be more easily 
made. In this work, we provide an overview of the most recent 
efforts in the field of ab initio electronic structure calcul-
ations of stoichiometric and defective oxide materials, both 
in their bulk form and for bare surfaces. We discuss the acc-
uracy of state of the art electronic structure methods in pre-
dicting bulk band gaps, band edge positions at surfaces, and 
optical transitions in defective oxides. The electronic structure 
methods discussed in the following sections belong either to 
the class of many-body perturbation theory methods in the 
GW approximation (section 3), which in itself may come in 
different flavors and with different numerical implementa-
tions, or to recently developed hybrid DFT functionals which 
are constructed specifically for solid state systems, namely 
dielectric-dependent and self-consistent hybrid functionals 
(section 4). The latter category of methods has the advantage 
of being computationally less expensive than full many body 
approaches, constituting an approximation to them.

When one has to determine the accuracy of ab initio 
methods in reproducing experiments, it is often not clear 
which experimental data one should use as a reference. On 
one hand, this issue may be related to physical effects that 
are missing in the theoretical description. One could think of 
excitonic effects and the electron–phonon renormalization 
of the band structure as two major causes of disagreement 
with experiments; in fact, these effects are often not taken 
into account in standard electronic structure calculations. On 
the other hand, the specific values of fundamental quantities 
such as the optical gap reported in the experimental litera-
ture are extrapolated from measured data assuming specific 
theor etical models. Section 2 gives an overview of the most 
common experimental techniques for the measurement of 
bulk and surface spectroscopic properties of semiconductors, 
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dealing with the critical issue of the relationship between the 
raw experimental data, the theoretical model used to describe 
the underlying physics, and the determination of accurate 
numer ical values for optical quantities such as the optical gap. 
Each section of the present work is self-contained and pro-
vides a general overview of the discussed methods. Results 
for oxide materials, including wide gap oxide semiconductors 
and correlated transition metal oxides, are then presented.

2. Experimental methods: a conceptual discussion

Reliable and meaningful experimental determination of 
optical properties of semiconductors critically depends on 
two factors. (a) Usage of up to date techniques characterized 
by: ample energy range, high energy and high angular reso-
lutions, high signal to noise ratio, UHV (ultrahigh vacuum) 
conditions. (b) Deep enough knowledge of theory leading 
to the physical laws needed to extract precise and accurate 
numerical values from the raw data. Thus, we give here first 
an updated synthetic conceptual overview of state of the art 
spectroscopic techniques for the measurement of optical and 
electronic properties of oxide semiconductors, including 
reflection and absorption spectra, photoemission and, par-
ticularly for very thin films and surfaces, scanning tunneling 
spectroscopy (STS). The present is not to be intended as a 
complete and detailed technical description of experimental 
setups for which the reader can consult many excellent text-
books and papers, e.g. Yu and Cardona [10].

The generally complex and intriguing experimental 
dependence of the main absorption edge on photon energy 
is then used to illustrate how much experiments and theory 
are entwined (the experimental findings are ‘theory laden’) 
making questionable (or too reductive) such an apparently 
simple concept like that of ‘optical band gap’. The positive 
counterpart of this experimental richness and complexity is its 
feedback role in stimulating new theoretical views as recently 
confirmed in the case of TiO2 anatase [11]. This last role of 
experiments is of crucial relevance for the present paper whose 
theoretical approach goes far beyond the mean field single 
electron band structure effects. The present review is limited 
to linear optics (linear macroscopic polarization response to 
applied wavy electromagnetic fields and, correspondingly, 
only one photon of the exciting light beam involved in the 
underlying microscopic processes).

The fundamental macroscopic (measurable) optical response 
is lumped [10] in the frequency dependent complex electric 
susceptibility tensor χij(ω) relating the Fourier transforms of 
the polarization vector P(ω) and of the electric field E(ω):

Pi (ω) = ε0 χij(ω)Ej (ω) .

The tensor χij  is symmetric due to Onsager theorem and has 
the property χij (−ω) = χ∗

ij (ω) .
Here we have neglected spatial dispersion (wavevector 

dependence of χij), even though it has been proved to be 
relevant in some cases [12]. Coherently, electric dipole 
approximation is understood for all waves. To simplify 
the notation, we will refer to the isotropic case only (cubic 
crystals) for which the tensor reduces to a single complex 

function of frequency χ (ω) = χ′ (ω) + iχ′′(ω), even though 
many relevant semiconducting oxides are not cubic (namely 
TiO2 anatase and rutile). Introducing the complex relative 
di electric function ε (ω) = 1 + χ (ω) and considering that, 
for nonmagnetic materials, the complex refractive index is 
n (ω) =

√
ε (ω) =

√
1 + χ (ω), we can introduce the two 

main laws suitable to experimentally determine the optical 
properties. First the normal reflectance of a semi-infinite 
crystal in vacuum:

R (ω) =

∣∣∣∣
n (ω)− 1
n (ω) + 1

∣∣∣∣
2

. (2.1)

Second, the exponential decay of the intensity I of the light 
wave propagating in the medium along direction x  >  0 beyond 
the outer surface at x  =  0:

I(x) = I(0)exp (−α (ω) x) (2.2)

where α is the absorption coefficient α (ω) ≈
(
ω
c

)
χ
′′
(ω) and 

α−1 (ω) is the optical penetration depth. Then the energy bal-
ance equation for the electromagnetic energy density gives us 
the bridge between the macroscopic quantity χ′′ (ω) and the 
microscopic quantum transitions from initial states of energy 
Ei and final states of energy Ef with absorption of a photon 
with energy �ω

χ
′′
(ω) =

2�
ε0 |E (ω)|2

∑
if

dPif

dt (2.3)

where the dPif

dt  are the quantum probabilities per unit time of the 
above transitions. While the real part χ′ (ω) can be obtained 
using the first of Kramers and Kroenig equations, expressing 
the time invariance and causality of the dynamical polariza-
tion response:

χ′ (ω) =
2
π
P
∫ +∞

0

ω′χ′′ (ω′)

(ω′)
2 − ω2

dω′

where P
∫
. . .dω′ means a principal value integral. In principle 

the goal of theoretical predictions of, e.g. α (ω) should be to 
reproduce the average experimental spectral behavior of this 
observable at all accessible frequencies apart from the (today 
achievable) small instrumental errors. So far, this goal has 
never been perfectly achieved even in the rather simple case 
of cubic direct-gap semiconductors like GaAs. Yet noticeable 
overall agreement for characteristic spectral features of the 
main absorption band, like van Hove singularities (including 
the main absorption edge, see below, and pre-band excitonic 
peaks, together with other many body effects) is often reached, 
sometimes with very good numerical estimates of optical band 
gap values from the fitted shape of the main absorption edge.

2.1. Transmission measurement of the absorption coefficient 
and reflection measurements of the complex index of  
refraction. Photoemission spectroscopy

A direct method to determine the absorption coefficient α 
and, thus, the imaginary part of χ, is to use equation  (2.2) 
stating that the light transmitted through a crystal plate 
decreases exponentially with the thickness. Because the light 

J. Phys.: Condens. Matter 30 (2018) 044003



M Gerosa et al

4

penetration depth is 1/α, to measure a significant transmitted 
light intensity the sample thickness must be of the order of 
1/α. For photon energies above the optical band gap, the 
absorption coefficient α increases abruptly with frequency, 
requiring several samples of decreasing thickness to explore 
a wide frequency range. To remedy this practical disadvan-
tage, reflection measurements can be made instead. A linearly 
polarized monochromatic light beam hits the sample surface 
at a given incidence angle φ, the polarization being either p 
or s with respect to the incidence plane defined by the inci-
dent wavevector and the surface normal. The intensity of the 
reflected light makes Rp(ω) or Rs (ω) measurable, these func-
tions of the complex refractive index n  =  n (ω) = n′  +  in′′ 
being given by the Fresnel formulae:

Rp (ω) =

∣∣∣∣∣
n2cosφ−

(
n2 − sinφ2

)1/2

n2cosφ+ (n2 − sin2φ)
1/2

∣∣∣∣∣

2

Rs (ω) =

∣∣∣∣∣∣
cosφ−

(
n2 − sin2φ

) 1
2

cosφ+ (n2 − sin2φ)
1
2

∣∣∣∣∣∣

2

from which both n′ and n′′ ≈ χ′′/2 can be obtained as func-
tions of frequency. Nowadays synchrotron radiation is used 
as source of the probe beam to cover a photon energy range 
between the infrared and the x-ray region with high intensity. 
The main drawback of reflection based techniques is their sen-
sitivity to surface contamination even if UHV conditions are 
used. Spectroscopic ellipsometry (SE) is an alternative equiva-
lent technique which will not be treated here being based on 
similar physical principles and with the same advantages and 
limitations. Even some emission spectroscopies, like pho-
toluminescence, share such undesired sensitivity to surface 
defects. Still today the most popular method to measure the 
optical response is normal incidence reflection spectroscopy. 
It hinges on a generalization of equation  (2.1). A complex 
normal reflectivity

r(ω) =
n (ω)− 1
n (ω) + 1

= ρ(ω)exp[iθ (ω)]

is formally introduced. Then it is shown that:

θ (ω) = −2ω
π

P
∫ +∞

0

ln (ω′)

(ω′)
2 − ω2

dω′.

At this point, from the experimental measurement of 
R (ω) = ρ2(ω) and using the above equations, the complex 
index of refraction and the complex electric susceptibility 
χ (ω) = χ′ (ω) + iχ′′(ω) can be obtained. To introduce 
two other spectroscopic techniques which give access to 

the microscopic probabilities dPif

dt , it is worth anticipating, 
at least roughly, the dependence of probability rates on spe-
cific quantum processes responsible for the observed optical 
properties. Without assuming the translational invariance of 
crystals from the very beginning, it turns out that, for inter-
band transitions involving only one photon and creating an 
electron–hole pair, with no phonon contribution (first order 
perturbation theory) [13]:

∑
if

dPif

dt
∝

∫
gv (E) gc (E + �ω)

�ω
dE (2.4)

where gv (E) and gc (E) are the density of states of the valence 
and of the conduction band respectively. Equation (2.4) can 
be applied also to amorphous semiconductors. The energy 
depend ence of the matrix elements of the perturbation oper-
ator has been neglected for it is generally weak. If we now 
introduce the total crystalline momentum conservation for 
the absorption process (crystals) the above equation  can be 
written as (for a direct gap semiconductor) [14]:
∑
if

dPif

dt �ω ∝
∑

k
(Ecv (k)− �ω) ∝

∫ dSk
|∇Ecv(k)|E=�ω

 (2.5)

where Ecv (k) = Ec (k)− Ev (k) and the last surface int egral 
is proportional to gvc (E) the joint density of states of the 
valence and the conduction bands, taking into account only 
allowed vertical transitions neglecting the photon momentum. 
In this way the main absorption band is dominated by van 
Hove singularities (discontinuities in ∂gvc (E) /∂E)occur-
ring whenever the denominator in the surface integral van-
ishes. The most import among them is around the optical band 
gap energy Eg = �ωg and determines, at least in the simplest 
cases, the shape of the main absorption edge. When phonons 
are involved (indirect gap semiconductors) at least second 
order perturbation theory must be applied. Moreover, if exci-
tonic features are present in the experimental spectra, the 
theory must include also two bodies (or many-body) effects. 
Before discussing the difficulties connected with the exper-
imental shape of the main absorption edge, it is convenient to 
introduce also photoemission spectroscopy. This spectroscopy 
is extremely powerful for the determination of the band struc-
ture of semiconductors even though the access to the density 
of states is even more indirect than in the previous cases and 
requires a lot of specific experimental skills. The sample sur-
face is irradiated by rather high energy monochromatic pho-
tons and, as a result, charge carriers are injected in vacuum 
from the valence band and/or from core states of the solid. 
Then the energy distribution of the emitted electrons is ana-
lyzed as a function of photon energy �ω. In the same spirit as 
in equation (2.3) this energy distribution can be written: [13]

g (E, �ω) =
{

K(�ω)
α(�ω)

}
T (E) S (E, �ω) gc (E) gv (E − �ω)

 (2.6)
where K includes parameters of the experimental instrument, 
α is the absorption coefficient, T an escape probability factor 
and S is the fraction of excited electrons lost because of scat-
tering. The main advantages with respect to absorption spectr-
oscopy are: (a) the possibility of measuring absolute values 
of energy (e.g. the top of the valence band) and (b) a separate 
measurement of both gc (E) and gv (E) .

Anyhow a thorough analysis of excited states (conduction 
band) can only be obtained by inverse photoemission (IPES). 
Very recently angle-resolved photoelectron spectroscopy 
(ARPES) [11] has revealed to be crucial to put into evidence 
the role of strongly bound excitons in TiO2 anatase single crys-
tals and nanoparticles and to elucidate the origin of crossover 
from polarons to Fermi liquids in transition metal oxides [15].
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2.1.1. The determination of optical band gap Eg is theory 
laden. Very often the goodness of ab initio computational 
methods of electronic structure of crystals is judged on the 
basis of their capability to reproduce the experimental value 
of optical band gap Eg. With this attitude, the intriguing exper-
imental phenomenology underpinning the shape of the main 
absorption edge is given no enough attention. Only in the ideal 
case of a perfect direct gap semiconductor with no measurable 
excitonic peaks, the measurement of Eg is both unambiguous 
and straightforward. In this case, using equation (2.5) for �ω 
close to Eg:

α�ω ∼ (�ω − Eg)
γ (2.7)

with γ  =  1/2 for allowed transition (or γ  =  3/2 for forbidden 
transitions) [10].

In indirect gap semiconductors phonons are either emitted 
or absorbed during photon absorption and

α�ω ∼
(�ω − Eg + �ωphon)

2

exp
(

�ωphon

kBT

)
− 1

+
(�ω − Eg − �ωphon)

2

1 − exp
(

�ωphon

kBT

)

smoothing out the main absorption edge and introducing a 
strong temperature dependence [10].

At photon energies below Eg absorption can be due to 
inelastic scattering of exciton-polaritons from phonons [10] 
contributing with both a line and a continuous spectrum. This 
effect is well documented and has been known in GaAs [16] 
since 1962: it introduces a significant and structured temper-
ature dependence in the increasing initial part of the absorp-
tion spectrum overshadowing the simple shape described by 
equation (2.7).

Yet some crystals (like, e.g. CdS, trigonal Se and TiO2 
anatase) exhibit none among the above behaviors, showing 
instead an exponential increase of the absorption coefficient 
as

α = α0exp
{
− b(Eg−�ω)

kBT

}
. (2.8)

Where b is a constant and T is the temperature down to a char-
acteristic value T0 and, below, T0 itself. In amorphous semi-
conductors, this is the so called Urbach edge, to be expected 
from the mainly localized nature of electron wavefunctions. 
In crystals, mainly characterized by extended and travelling 
Bloch states, this shape of the absorpion edge is not completely 
understood though three different explanations have been pro-
posed: [13] (a) bound excitons interactions with phonons [17] 
(see figure 1); (b) electric field broadening of absorption edge; 
(c) electric field broadening of an exciton line.

2.2. Scanning tunneling spectroscopy (STS)

All spectroscopic techniques described above furnish a spa-
tially averaged information over a surface region whose least 
size is of the order of photon wavelength. Scanning tunneling 
microscopes can be used to get an information similar to that 
of photoemission but with a much higher space resolution, 
down to atomic resolution at very low temperatures. For spec-
troscopic use the tip of the microscope (with an apex radius 

of curvature rt) is positioned just above a fixed point of the 
surface and at a fixed distance z from it. Then the polariza-
tion voltage V is varied, tipically from  −3 V to  +3 V (or less). 
Correspondingly the tunneling current I between the tip and 
the surface (or viceversa) is measured. Using the simplest pos-
sible model [18], I can be written as:

I (V) ∝
∫ EF+eV

EF
dE gs (rt, E) gt (E − eV) T (z, E, V)

 (2.9)
where EF is the Fermi energy, gs is the local density of states of 
the sample, gt is the local density of states of the tip

T (z, E, V) = exp

[
−2z

�

√
2m

(
φ− E − 1

2
eV

)]
,

is the transmission probability of a trapezoidal vacuum bar-
rier, φ = 1

2 (φt + φs) the work function average of the two 
electrodes and m  the electron mass. Provided gt and T  are 
known, gs(E) can be evaluated around the Fermi energy, mea-
suring dI(V)/dV  by means of the built-in lock-in technique. 
The error made by this procedure and more realistic interpre-
tative equations than (2.9) are discussed in [19] and references 
therein. For geometric instrumental reasons gs(E) is more 
properly an almost normal projection of the local density of 
states and contains surface features. STS has the great advan-
tage of being capable of measuring both occupied and empty 
states just changing the sign of the polarization potential V. A 
critical issue remains the mixing with the density of states of 
the tip [19].

3. Many-body calculations of electronic structure  
of oxides

3.1. Introduction

As already mentioned in section  2, a quantitative under-
standing of the electronic excitations in materials and how 
they lead to the measured optical gaps and energy band dis-
persion in angle-resolved photoemission and inverse pho-
toemission spectra (ARPES and IPES) must be based on 
appropriate theoretical models. Depending on the type of 
experiment, involving neutral or charged excitations, different 
theoretical tools may be needed. Charged excitation energies 
as those measured in ARPES and IPES, but also in STM, are 
by definition poles of the system’s one-particle (electron or 
hole) Green’s function G. The latter describes the probability 
amplitude for transitions of an electron or a hole from the ini-
tial to the final state throughout the fully interacting many-
electron system. On the other hand, neutral excitations probed 
by optical techniques, such as SE or reflectivity, are intrinsi-
cally described by the macroscopic dielectric function of the 
system, whose knowledge requires to go beyond the single 
quasiparticle concept. This may be achieved, e.g. by intro-
ducing electron–hole (two particles) Green’s functions [20] 
which may be computed within the formalism of the Bethe-
Salpeter equation.

The knowledge of band structure (quasiparticle) gaps 
between valence and conduction single-particle states may 
however give a realistic estimate of the optical gaps if the 
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electron–hole interactions (i.e. excitonic effects) are small 
enough to be neglected. As recently exemplified by Baldini et al 
[11] in the case of TiO2, this is not a trivial issue, and the key 
for substantially advancing our physical understanding is often 
found by the use of more than one experimental techniques, in 
combination with suitable ab initio theoretical simulations [11].

In any case, the calculation of quantitatively correct quasi-
particle dispersion bands is an essential ingredient. Besides 
optical properties, a quantitative knowledge of the one-particle 
band structure is also of paramount importance when electron 
transport properties are considered, e.g. in non-homogeneous 
devices such as in solar cells, or in systems for electrochem-
ical applications, where band alignment properties determine 
the functionality of the system.

The remaining of this section will be devoted to the Hedin’s 
GW method [21–23], the state-of-the-art approach to include 
many-body effects in ab initio band structure calculations, 
focusing on its application to oxide materials.

3.2. The GW approach

The GW method has become the state-of-the-art approach for 
ab initio electronic structure calculations of materials based 
on many-body perturbation theory [24]. In the quasiparticle 
picture describing charged electronic excitations, the single 
particle energies and wavefunctions are solution of the quasi-
particle equation,

[
T̂ + V̂H + V̂ion +

∑̂] ∣∣ψQP
n

〉
= εQP

n

∣∣ψQP
n

〉
 (3.1)
whose structure is mathematically similar to the one of the 
DFT Kohn–Sham equations [25],

[
T̂ + V̂H + V̂ion + V̂xc

]
|ψn〉 = εn |ψn〉 (3.2)

with the fundamental difference that the exchange-correlation 
potential V̂xc is replaced by a nonlocal, energy dependent 

generalized potential 
∑̂

 known as the electronic self-energy, 

describing the quantum mechanical exchange and correlation 
effects on the quasiparticle spectrum. The common contrib-
utions in equations  (3.1) and (3.2) represent the electronic 
kinetic energy (T̂ ), the classical Hartree potential (V̂H), and 
the ionic potential (V̂ion). Here n is a label identifying the elec-
tronic state; in the case of a Bloch wavefunction, it represents 
the band index, the wavevector in the first Brillouin zone, and 
the spin polarization.

Within Hedin’s self-consistent scheme, one could in prin-
ciple construct systematically improved approximations to 
the self-energy. Moreover, one could build further approx-
imations to include electron–hole interaction effects [26] and 
thus calculate optical absorption spectra and related quanti-
ties. We address the reader to existing reviews on how, starting 
from the Hedin’s scheme, the electron–hole interaction can be 
also taken into account by further extending Hedin’s ideas, 
within the same ab-initio framework [20].

3.2.1. The G0W0 approximation. In principle, one should 
evaluate the self-energy by solving self-consistently the set 
of Hedin’s equations, as graphically represented in figure 2; 
besides the self-energy Σ the fundamental quantities defined 
in Hedin’s scheme are the one-particle Green’s function 
G, the polarizability χ̃ , the screened Coulomb interaction 
W, and the vertex function Γ. The latter quantity describes 
the interaction between electrons and holes, which may be 
created in the system upon, e.g. light absorption (neutral 
excitation).

The GW approximation is meant to describe charged exci-
tations; hence, the electron–hole interaction is neglected, 
and the vertex function is assumed to be Γ = 1. Within this 
approximation for χ̃, the self-energy can thus be formally 
written as (see the top-left side of the pentagon in figure 2)

Σ = iGW (3.3)

where the screened Coulomb interaction is obtained from 
the polarizability (density–density linear response function) 
within the random phase approximation,

Figure 1. Optical spectra of anatase TiO2 single crystals, showing the effect of bound excitons on the shape and position of the absorption 
edge. Imaginary part of the dielectric function at 20 K with the electric field polarised along (a) the a-axis (E  ⊥  c) and (b) the c-axis (E ǁ c)  
of the anatase primitive cell. The experimental data measured by spectroscopic ellipsometry on a pristine (n ~ 0 cm−3) anatase TiO2 
single crystal are reported in blue, while those obtained on a highly n-doped single crystal (n  =  2  ×  1019 cm−3) in red. The quasiparticle 
indirect gap Eind  =  3.47 eV and direct gap Edir  =  3.97 eV, as estimated by ARPES, are indicated by dashed grey and black vertical lines, 
respectively. Reproduced from [11]. CC BY 4.0.
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χ̃ = −iGG (3.4)

(base of the pentagon in figure  2) which also assumes that 
electrons and holes do not interact.

In principle, equations (3.3) and (3.4) should be evaluated 
at self-consistency within the Hedin’s scheme (even when 
neglecting the vertex), i.e. G and χ̃ should be expressed in 
terms of the self-consistent quasiparticle energies and wave-
functions. In practice, this approach is computationally very 
expensive even for relatively small systems; a more common 
approach consists in evaluating the one particle Green’s 
function by using the electronic eigenvalues and wave func-
tions computed for some reference non-interacting system, 
typically the DFT Kohn–Sham system. The non-interacting 
Green’s function G0, evaluated for the reference Kohn–Sham 
system, reads

G0 (x, x′;ω) = −
∑

n

ψn(x)ψ∗
n (x′)

εn−ω−iηsign(εn−εF) (3.5)

where εF denotes the Fermi energy, and η is an arbitrarily 
small constant which modifies the form of the Green’s func-
tion so as to describe the propagation of an additional electron 
(for εn > εF) or hole (for εn < εF) in the system. The spatial 
and spin coordinates are denoted by x, and ω indicates the 
frequency of the density perturbation. Within the indepen-
dent particle approximation, the electronic polarizability χ̃0 is 
given by the product of the non-interacting electron and hole 
Green’s functions, as obtained from equation (3.4) by approx-
imating G with G0 as given by (3.5). In this approximation, 
the screened Coulomb interaction W0 is obtained by solving 
the corresponding Dyson-like equation connecting χ̃ and W, 
as shown in figure 2. The self-energy is thus expressed in the 
non-self-consistent G0W0 approximation, and the quasiparticle 
energies are computed from first-order perturbation theory on 
top of the Kohn–Sham eigenvalues and wavefunctions:

Eqp
n = εn +

〈
ψn|Σ̂

(
Eqp

n
)
− V̂xc|ψn

〉
. (3.6)

The implicit equation  (3.6) may be solved by linearizing 
the self-energy (which should be in principle evaluated at the 
quasiparticle energy Eqp

n ) around the corresponding Kohn–
Sham eigenvalue εn, or by obtaining the solution recursively, 
using e.g. the secant method. The DFT eigenvalues and wave-
functions are typically computed within the local density 
approximation (LDA) or the generalized gradient approx-
imation (GGA). While this approach normally gives accurate 
band structures for sp semiconductors, it may fail for mat-
erials exhibiting spatially localized electronic states close to 
the Fermi energy, such as correlated transition metal oxides. 
In this case, one has to adopt a different DFT starting point, 
such as those obtained within DFT  +  U or hybrid DFT, or 
alternatively define an optimal starting point which avoids 
such arbitrary choices (see section 3.5 below).

3.2.2. The COHSEX approximation. One may introduce a 
further simplification to the RPA screened Coulomb interac-
tion W, which can be conveniently expressed in real space as

W (r, r′;ω) = v (r, r′) + Wp(r, r′;ω)

where v (r, r′) = 1/ |r − r′| is the bare Coulomb potential, and 
Wp denotes the polarizable part of the W, which is a frequency 
dependent quantity describing electronic screening. As origi-
nally suggested by Hedin, [21] Wp may be approximated by 
taking its static limit (ω → 0), obtaining a frequency inde-
pendent self-energy (the COHSEX self-energy), [23] which 
can be seen as originating from two contributions: a Coulomb 
hole (COH) self-energy, describing the electrostatic interac-
tion between an electron and its Coulomb hole arising from 
static polarization of the system; a screened exchange (SEX) 
self-energy, describing the statically screened Fock exchange 
interaction, proportional to the inverse of the macroscopic 
dielectric constant of the system. The COHSEX approach 
goes beyond the Hartree–Fock theory, taking into account 
electronic screening, although only on a macroscopic scale 
and neglecting dynamical effects. The lack of frequency 
dependence suggests that a connection may be established 
between the COHSEX self-energy and the DFT exchange-
correlation potential, provided that the latter includes in some 
form the nonlocal Fock exchange, as in hybrid functionals. 
This relationship allows one to define dielectric-dependent 
hybrid functionals, as discussed in section 4.2 below.

3.3. Early applications of the GW methods to oxide materials

Despite the fact that the GW idea was initially introduced in 
the sixties, the lack of computational resources suitable to 
work out numerical solutions has limited its application to 
very simple model systems, such as the homogeneous elec-
tron gas, where analytical predictions could be made [28, 29]. 
Only in the eighties the GW method started to be applied to 
real materials, taking into account their microscopic structure 
at the atomistic level [30–34]. Due to the additional com-
plexity of oxide materials with respect to elemental semicon-
ductors such as silicon, applications of GW to oxides started to 
appear only a decade later, with the works by Massidda et al 
on MnO [35], NiO [36], and VO2 [37]. Such works employed 

Figure 2. Schematic representation of the iterative solution of the 
Hedin’s equations (specified on the sides of the pentagon), which 
link the self-energy Σ the one-particle Green’s function G, the 
vertex function Γ, the irreducible polarizability χ̃, and the screened 
Coulomb interaction W. Reprinted from [27], Copyright 2009, with 
permission from Elsevier.
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a simplified scheme, neglecting dynamical effects in the self-
energy (i.e. the energy dependence of Σ), with good results for 
theoretical bandgaps compared to experiment. Another early 
application of GW to oxides is described in the work by Králik 
and coworkers for the case of ZrO2 [38].

Some GW results on bulk oxides (namely In2O3 and MnO) 
can be found in the review by Bechstedt et al [39].

3.4. One-shot GW calculations: applications to d0 oxides

The large majority of today’s GW band structure calcul-
ations are based on the so-called ‘one-shot’ approach (see 
section  3.2.1), where no self-consistency between G, W 
and Σ is enforced. In other words, G and W are only com-
puted once, starting from initial DFT band structure results, 
and the band energy correction is obtained by evaluating 
(Σ  −  Vxc) perturbatively on the LDA or GGA Kohn–Sham 
eigenstates. The G0W0 approach is generally quite successful 
in the case of d0 oxides, with results for the computed band 
gaps which are essentially of the same quality as in the case 
of simple sp semiconductors. Noticeably, (Σ  −  Vxc) has been 
shown to introduce nontrivial (state-dependent) shifts of the 
d bands with respect to sp ones in noble metals, leading to 
band structure results in much better agreement with the 
experimental ARPES data than at the LDA/GGA level, as 
demonstrated in the case of copper shown in figure 3 [40]. 
Oxide materials whose band structure turns out to be well 
described at the G0W0 level include MgO [41] and TiO2 [42, 
43]. For the latter material, calculations also reproduce the 
effects of strain [44] and that of Nb impurities [45]. More 
recently, also the case of bulk WO3 has been shown to be 
well described at the G0W0 level, starting from LDA or PBE 
[46, 47].

In the high-throughput ab initio study by Hautier et al [48], 
where more than 4000 binary and ternary oxide compounds 
have been scanned in order to identify those with the lowest 
electron effective mass, G0W0 results have been taken as a ref-
erence when experimental data were not available.

Although G0W0 is reported to work well in many cases, 
some exceptions within simple oxides exist. The most famous 
one is that of ZnO, which has been reported in the past as 
a problematic case for GW: different theoretical works gave 
widely scattered results concerning a simple number as its 
direct bandgap at the zone center (see table 1). In ZnO, the 
top valence and bottom conduction states have a very different 
character, as shown by several authors [50, 51], and require 
large basis sets to be correctly described. Moreover, using 
plasmon pole models for the frequency integrations in GW 
may be a delicate choice, especially when semicore electrons 
are included in the valence within a pseudopotential scheme. 
This has been clearly shown by Stankovski et  al [52], who 
demonstrated that the previous work by Louie and coworkers 
[53], using the Hybertsen plasmon pole model [33] based on 
sum rules, was affected by a miscount of the number of active 
electrons. The picture has hence been clarified by disentan-
gling effects due to convergence issues and the plasmon pole 
approximation for the dynamical screening [54]. The influ-
ence of plasmon pole models in G0W0 calculations for oxide 
materials has been investigated by Samsonidze et  al [55] 
for ZnO, TiO2, and Co2O and by Laasner [56] in the case of 
CdWO4.

However, there are systems where the reported mis-
match between computed G0W0 band structure and exper-
imental photoemission data cannot be explained in terms of 
technicalities such as basis set convergence issues, the use 

Figure 3. GW results for the bulk copper band structure, compared 
with the DFT-LDA results (dashed line), and with the experimental 
data reported in [49] (circles). Reprinted figure with permission 
from [40], Copyright 2002 by the American Physical Society.

Table 1. Band gap of ZnO (eV) computed within GW at various 
levels of theory and using different numerical approximations 
for the treatment of the frequency dependence in the self-energy 
(FF: full-frequency integration; PPM: plasmon pole models), 
the exchange-correlation functional used in the starting DFT 
calculation, and the treatment of the electron-ion interaction (AE: 
all-electron; NCPP: norm-conserving pseudopotentials; PAW: 
projected augmented wave method). G0W0 denotes one-shot GW, 
GW0 includes self-consistency only in the Green’s function, and 
GW is fully self-consistent GW. Results from quasiparticle self-
consistent GW (QPscGW) are also reported, in which the vertex 
correction has been approximately evaluated (QPscGW  +  fxc).  
The experimental band gap is 3.44 eV [78].

GW level DFT level Band gap

G0W0 (FF) PBE (PAW) 2.12a

GW0 (FF) PBE (PAW) 2.54a

GW (FF) PBE (PAW) 3.20a

G0W0 (PPM) LDA+U (NCPP) 3.6b

G0W0 (FF) LDA (NCPP) 2.4c

G0W0 (FF) LDA (AE) 2.83d

G0W0 (FF) PBE0 3.32e

G0W0 (PPM) PBE (NCPP) 3.06f

QPscGW PBE (NCPP) 4.61g

QPscGW  +  fxc PBE (NCPP) 3.42g

a Bruneval et al [62].
b Stankovski et al [52].
c Gerosa et al [51].
d Courths and Hüfner [49].
e Chen and Pasquarello [79].
f Friedrich et al [50].
g Grüneis et al [91].
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of pseudopotentials, or simplifications in the description of 
the dynamical screening. Systems such as VO2, where G0W0 
breaks down completely [57] are a clear indication that the 
intrinsic approximations of the method should be overcome 
to achieve a correct physical description of some among the 
oxide materials.

3.5. Beyond G0W0@LDA/GGA: self-consistency in GW

A first reason why G0W0 may fail in some oxide materials 
is linked to the lack of self-consistency, i.e. to the fact that 
the starting LDA or GGA wavefunctions are kept unchanged. 
Prototypical cases are systems which appear to be metallic 
(gapless) at the starting LDA/GGA level, while they are exper-
imentally semiconductors or insulators. In such cases, G0W0 
may be unable to open a gap, and the LDA/GGA Kohn–Sham 
wavefunctions exhibit wrong spatial localization properties.

This problem is usually negligible in d0 oxides, where d 
states are only slightly affected by the LDA/GGA overdelo-
calization problem, but may become important in systems 
such as NiO or CoO. In general, G0W0 results may be affected 
by the choice of the starting point, as shown by Bechstedt 
and coworkers in 2007 [58], and more recently by Kang et al 
for the case of post transition metal oxides such as Ga2O3, 
In2O3, and SnO2 [59]. An obvious solution for the starting 
point dependence would be to iterate the Hedin equations (see 
figure 2) to self-consistency. However, a fully self-consistent 
GW approach has been shown to fail if vertex corrections are 
not considered at the same time (i.e. self-consistency should be 
enforced on the full pentagon, including the nontrivial vertex 
function Γ in figure 2, leading to the so-called GWΓ approach) 
[60]. Self-consistency within GW has been shown to worsen 
G0W0 results for many systems [61]: essentially, a cancellation 
of errors has been shown to occur in the one-shot approach 
[62]. Since a fully self-consistent GWΓ approach is far beyond 
the present computational capabilities, even for very simple 
systems such as bulk silicon, alternative approaches allowing 
one to get rid of a possibly ‘too wrong’ starting point wave-
function are necessary. For this reason, several ideas have 
been proposed in the GW community, ranging from a GW0 
scheme (where only G is updated), tested in the cases of ZrO2 
and HfO2 [63], to strategies to choose an optimal starting 
point to be used in a one-shot G0W0 scheme. The latter idea 
has indeed been implemented in several flavors: (i) starting 
from an LDA+U calculation, with applications to lanthanide 
oxides [64, 65], MnO, FeO, CoO, NiO [66], and NiO, MnO, 
V2O3 [67]; (ii) starting from a COHSEX calculation, tested on 
TCOs (transparent conducting oxides) [68]; (iii) starting from 
hybrid functional calculations (typically HSE), as investigated 
in the case of MgO; [58] MnO, FeO, CoO, InO [69]; NiO 
[70]; and SnO2 [71]; and (iv) starting from LDA-1/2, tested in 
the case of MgO and ZnO [72].

A further step along the path of the ‘starting point problem’ 
has been taken with the so-called quasiparticle self-consistent 
GW (QPscGW) approach [73], introduced by van Schilfgaarde 
and coworkers in 2004 [74, 75] and recently applied to several 
oxide materials ranging from MnO, CoO, TiO [76], to TiO2 
and cubic SrTiO3 [77].

In the QPscGW scheme self-consistency is introduced at 
the G0 level, i.e. one seeks an optimal non-interacting Green’s 
function, having poles already at the right energy position, as 
the best starting point for a subsequent one-shot GW calcul-
ation. In this way, even a critical system such as VO2, where 
G0W0 breaks down completely also when an improved (hybrid 
functional) starting point is chosen [80], turns out to be well 
described. In most cases where G0W0 fails, QPscGW may be 
considered as a way for a systematic improvement of band 
structure theoretical results of oxide materials.

3.6. Beyond GW

Although QPscGW may represent an optimal choice as a 
starting point, in the intriguing case of copper oxide (CuO) 
it has been shown to fail [81]. The computed gap turns out 
to be larger than 4 eV, against an experimental gap of 1.7 eV: 
the reason for this disagreement has been traced back to 
a substanti al underestimation of the dielectric screening 
entering in W [82]. On the other hand, in the case of CuO 
some authors have also used ad hoc corrections [83, 84], at the 
expense of losing the generality expected in a fully ab initio 
scheme. Possible sources of remaining errors in QPscGW are 
the neglect of three-points vertex contributions (which would 
require a GWΓ approach as discussed by van Schilfgaarde 
himself) and the neglect of lattice polarization effects and 
the electron–phonon interaction, as thoroughly discussed in a 
recent review by Giustino [85]. The effect of the lattice polar-
ization has been considered for different systems, including 
oxides such and V2O5 (having an experimental bandgap 
almost coinciding with the LDA one [86]), and MgO [87]. 
Excitonic effects are known to play an important role in the 
case of CuO2 [81].

Further developments aimed to go beyond the GW approx-
imation have been proposed also in the case of SrVO3, where 
the effects of dynamical vertex corrections has been studied 
within a GW  +  C scheme based on an exponential expansion 
of G [88]. The same oxide has been considered in the per-
spective of merging GW with dynamical mean field theory 
(DMFT) [89]. The role of vertex corrections in GW band 
structure calcul ations for oxide materials has been studied 
also in the case of BaBiO3 [90], CdO [91], TiO2, ZnO and 
MgO [92]. In general, the problem of external vertex cor-
rections (i.e. how to implement a GWΓ scheme), as well as 
the problem of finding the best way to compute W (where 
‘internal’ vertex corrections may influence the screening) are 
presently still open questions in the GW community.

3.7. GW Applications to realistic oxide surfaces  
and interfaces

GW has been successfully applied to study semiconductor 
surfaces since more than 15 years (see e.g. [93, 94, 95]). 
However, oxide surfaces still represent a challenge, because 
the many degrees of freedom (large number of atoms/ big 
supercells), associated with the complexity of many body 
effects in the bulk band structure, as described in the previous 
subsections, make actual calculations exceedingly heavy from 
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the computational point of view. This is the reason why, till 
very recently, only simplified GW approaches were possible 
for oxide surfaces (see e.g. [96]).

However, it is precisely in the presence of a surface or an 
interface that the ability to compute the absolute position of 
electronic energy levels becomes important: for example, 
applications based on electron transport, as in the case of solar 
cells require an accurate knowledge of band edge alignment. 
The same is true in the case of effective 2D oxide systems and 
their interplay with adsorbates [97].

Thanks to the development of efficient methods to compute 
the screened interaction W avoiding extensive summations 
over empty states (see e.g. [98]), and to the availability of more 
powerful computational resources, large scale full GW calcul-
ations suitable to study oxide surfaces and interrfaces are now 
becoming a reality [99, 100]. The feasibility of ab initio GW 
calculations for real surfaces was clearly demonstrated in the 
work by Govoni and Galli [101] and that by Gao et al [102]. 
As a consequence, GW calculations of surfaces and complex 
interfaces [103], including those of transition metal oxides of 
interest for photoelectrochemical water splitting [104] (see 
figure 4) have recently started to appear in the literature. The 
field has been recently reviewed by Pham et al [8].

4. Recent developments in hybrid functional  
calcul ations of materials

4.1. Hybrid functionals: motivations, development  
and application to electronic structure calculations

Although many body GW based methods have become 
increasingly popular even for electronic structure calculations 
of large condensed systems including hundreds of atoms, espe-
cially thanks to recent methodological and algorithmic devel-
opments, hybrid functionals represent a computationally more 
affordable alternative and a practical way to fix some of the 
issues of local and semilocal density functionals. Moreover, in 
some pathological systems, in which e.g. the self-interaction 
error is particularly critical, reproducing the correct ground 

state within DFT, including the spatial localization of relevant 
electronic states, is a fundamental prerequisite to obtaining 
accurate quasiparticle corrections, and therefore band struc-
tures properly including many body effects (see section 3.5).

Two, related, major drawbacks of local and generalized gra-
dient exchange-correlation approximations are the incomplete 
cancellation of the density self-interaction potential included 
in the Hartree term, and the absence of a derivative discon-
tinuity in the total energy functional with respect to density. 
They result, for example, in a qualitatively wrong description 
of charge transfer and dissociation mechanisms in molecular 
systems [105]. With regard to spectroscopic properties, the 
ionization potential (IP) and electron affinity (EA) of a finite 
system can be rigorously calculated using the ΔSCF approach 
[106]; in this case the lack of a derivative discontinuity mani-
fests in an inaccurate prediction of the IP and EA, which may 
be cured by using orbital dependent energy functionals [107]. 
For the same reasons, the Kohn–Sham approach in which local 
and semilocal functionals are naturally defined provides band 
gap values for solids which are too small compared to experi-
ments; this issue has a fundamental origin in the inability of the 
Kohn–Sham gap in capturing the derivative discontinuity, inde-
pendently of the specific functional used, but for extended sys-
tems it cannot be easily circumvented using the ΔSCF method 
[108]. However, a practical solution to the band gap problem is 
again offered by orbital-dependent functionals, which are well 
defined in a generalized Kohn–Sham (GKS) scheme [109]. 
Band gaps computed within the GKS framework turn out to 
be in better agreement with experiments [110], since a portion 
of the exchange-correlation derivative discontinuity is already 
incorporated in the calculated GKS gap [108].

Hybrid exchange-correlation functionals are a popular 
implementation of orbital-dependent functionals, whose most 
common one-parameter form (defining full-range functionals, 
parametrized by the exchange fraction α) can be justified on 
the basis of the adiabatic connection theorem [111]; their 
introduction in quantum chemistry originates from the need of 
improving the prediction of various molecular thermochem-
ical properties, including e.g. atomization energies [112, 113].

Hybrid functionals are constructed by admixing a por-
tion of the exact exchange (EXX) energy Ex  to GGA type 
functionals (whose exchange and correlation contributions 
are denoted EGGA

x  and EGGA
c , respectively); the general form 

of the exchange-correlation energy for one-parameter hybrid 
functionals reads

Exc = αEx + (1 − α)EGGA
x + EGGA

c . (4.1)

The EXX energy is defined in analogy with the exchange 
energy of Hartree–Fock theory, and the fraction of EXX, 
denoted α in the case of one-parameter hybrids, may vary from 
0 (in which case the original GGA functional is obtained) to 1 
(Kohn–Sham exact exchange potential) [114]; at variance with 
Hartree–Fock, however, the EXX integral in hybrids is evalu-
ated using the GKS DFT wavefunctions. Several hybrid func-
tionals have been designed, which differ by the specific choice 
of the GGA functional approximating the semilocal part, and 
the value set for the exchange fraction. The scope of the present 
discussion is limited to those functionals which have seen wider 

Figure 4. Band edge alignment, obtained at the G0W0 level, at the 
photoanode/catalyst WO3/IrO2 interface for the oxygen evolution 
reaction. The effect of water on the band alignment was taken into 
account by using continuum solvation models. The relative position 
of the conduction band minimum of WO3 (ECBM) and the Fermi 
level (Ef) of the interface, in the absence of water (left panel), and in 
the presence of water in contact with the absorber and the catalyst 
at the same time (right panel) are shown. Reprinted with permission 
from [104]. Copyright 2015 American Chemical Society.
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application to solids and solid state chemical systems, while for 
an overview of other approaches, including e.g. local hybrids 
and functionals involving unoccupied orbitals and eigenvalues, 
the reader is referred to [115]. The PBE0 [116] and B3LYP 
[117] functionals are widely employed in solid state applica-
tions. B3LYP does not follow equation (4.1), but is based on 
a different three-parameter functional form fitted to reproduce 
experimental data sets for molecules, and incorporating 20 per-
cent of exact exchange (equivalent to α  =  0.20). PBE0 instead 
builds on the original Becke’s one-parameter hybrid (equation 
(4.1)), using α  =  0.25. A formal justification for this value of 
α was provided on the basis of comparison with many-body 
perturbation theory [118]; however, the validity of this argu-
ment is strictly limited to reproduction of atomization energies 
of molecular data sets.

Hybrid functionals designed for quantum chemical calcul-
ations saw their first applications to solids at the beginning of 
the 2000s, providing a significant improvement over GGA in 
the prediction of band gaps, and a comparable or better perfor-
mance for structural and cohesive properties of semiconduc-
tors [119–121]. Remarkably, they were also proven able to 
adequately describe correlated rare earth and transition metal 
monoxides [122–125]; in fact, for these Mott-Hubbard insula-
tors, which local and semilocal functionals typically predict to 
be metallic, the self-interaction error overdelocalizes the par-
tially filled d orbitals, favoring a nonmagnetic ground state. 
The portion of exact exchange present in hybrids partially cor-
rects the self-interaction error, yielding a qualitatively correct 
insulating ground state.

Shortly afterwards, hybrid functionals specifically tai-
lored to condensed systems began to be developed. Based on 
one-parameter functional forms analogous to PBE0, range-
separated hybrids were proposed and have since become 
increasingly popular in solid state calculations; they were 
designed so that the Coulomb kernel in the EXX energy is sep-
arated in short- and long-range contributions, which may then 
be treated independently. In particular, two different exchange 
fractions, pertaining to the short- and long-range part of the 
range-separated EXX energy, need to be specified. Two pop-
ular range-separated hybrids in which the long-range part of 
the Coulomb interaction is completely neglected (short-range 
hybrids) are the Heyd–Scuseria–Ernzerhof (HSE) [126, 127], 
and the screened exchange LDA (sx-LDA) [108, 128, 129], 
functionals, for which the short-range exchange fraction is set 
to 0.25 and 1, respectively. In HSE, the screened Coulomb 
interaction in EXX is defined through the complementary 
error function, erfc(x) = 1 − erf (x),

1
r → erfc(ωr)

r , (4.2)

where the screening parameter is fixed at an optimal value of 
ω  =  0.106 a.u.−1 [130], independently of the system. Instead 
for sx-LDA, the screening function is defined to be system 
dependent. Screened exchange functionals were successfully 
applied to calculation of lattice constants, bulk moduli, and 
band gaps of solids [131–133], including correlated oxides 
[134], as well to defects in oxide materials [135]. HSE is today 
perhaps the most widely used hybrid functional for solid state 
calculations.

The considerable progress made in the development of effi-
cient representations of the EXX operator [136–139], and its 
evaluation using highly scalable algorithms, have contributed 
to make hybrid functional calculations affordable for large 
scale condensed matter problems, including e.g. molecular 
dynamics simulations of aqueous solutions [140] and semi-
conductor-liquid interfaces [141]. However, the application of 
hybrid functionals originally designed for molecular quantum 
chemistry calculations, although often proving practically 
successful, is not theoretically well justified in condensed sys-
tems. One issue is related to the choice of the exchange-cor-
relation approximation for the local part of the functional. For 
example, the widely used B3LYP functional does not fulfil 
the homogenous electron gas limit at slowly varying densities, 
since the Lee–Yang–Parr (LYP) correlation functional [142] is 
not correct in this limit. As a consequence, B3LYP does not 
accurately predict ground state properties (e.g. atomization 
energies) of solids with spatially delocalized electrons (metals 
and small gap semiconductors); if instead of LYP, the PW91 
correlation energy is used, the resulting B3PW91 functional 
[112] possesses the correct free-electron gas limiting behavior, 
and an overall better performance is achieved in solid state 
calculations [143]. Nonetheless, both B3LYP and B3PW91 
are semiempirical functionals optimized for molecular prop-
erties, and hence their application to condensed systems is 
questionable. However, even for functionals that are funda-
mentally better suited for solids (e.g. PBE0 and, especially, 
HSE), the choice of the correct value for the EXX fraction α 
remains an issue, which is even more critical for the calcul-
ation of spectroscopic properties. In fact, the value of α has a 
dramatic effect on the band structure and, in particular, on the 
computed band gap of semiconductors and insulators, which 
is systematically underestimated within GGA. For example, 
PBE0 overestimates by more than 50% the gap of simple 
semiconductors such as silicon and germanium, and tends to 
overestimate, although less seriously, the one of III–V semi-
conductors like GaAs and AlAs, while providing results in 
good agreement with experiment for more ionic compounds, 
such as AlN. At the opposite limit, strongly ionic insulators 
such as I–VII and II–VI compounds, including alkaline earth 
oxides (AeO, Ae  =  Be, Mg, Ca, Sr, Ba), exhibit large band 
gaps in the range 5–10 eV [144], reaching 14 eV in the case of 
LiF; for these materials, PBE0 underestimates the band gap 
by typically 15 to 20 percent [40]. The screened exchange 
HSE functional gives systematically smaller band gaps than 
PBE0, due to the cutoff introduced in the long-range tail of 
the Coulomb potential, resulting in the neglect of a portion 
of the exchange energy with respect to PBE0. Consequently, 
band gaps computed for many semiconductors with small to 
moderate gaps (including, e.g. III–V semiconductors and d0 
metal oxides) turn out to be in better agreement with experi-
ment [40, 50].

From the previous discussion, it is clear that a fixed value 
of α (e.g. 0.25 for PBE0) does not ensure equally accurate 
prediction of electronic properties when applied to a very 
broad variety of systems, such as metal oxides and strongly 
ionic materials. Instead, it is convenient to consider the EXX 
fraction as a system dependent parameter which may be 
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affected by the bonding characteristics and, consequently, the 
electronic and dielectric properties of the material.

4.2. Dielectric-dependent hybrid functionals for bulk systems

The EXX fraction has been shown to be related to the strength 
of the electronic screening in the material. Early attempts at 
the construction of approximate (static) self-energies within 
the many-body GW scheme have shown that quasiparticle 
corrections to DFT eigenvalues are inversely proportional to 
the static dielectric constant of the material [145, 146]. Based 
on this observation, and invoking a formal analogy between 
the GKS exchange-correlation potential for full-range hybrids 
(obtained by deriving the total energy functional in equa-
tion  (4.1) with respect to density) and the electronic self-
energy in the COHSEX approximation (section 3.2.2), the 
EXX fraction was shown to be given as the inverse of the static 
dielectric constant [147–149]. Hence, for full-range dielectric-
dependent hybrids the exchange-correlation potential takes a 
functional form analogous to PBE0 (equation (4.1)), but with 
a system dependent exchange fraction

α = 1
ε∞ (4.3)

which may be evaluated at different levels of accuracy, 
depending on the approximations made in computing the 
dielectric constant ε∞. Early works evaluated the dielectric 
constant using the Fermi’s golden rule (independent particle 
approximation) [150] or the random phase approximation 
[151], or alternatively including the exchange-correlation 
contrib ution (local field effects) at GGA level [38]. Model 
dielectric functions have been used as well [146]. Inclusion of 
exchange-correlation effects beyond semilocal DFT was pur-
sued in the works of Conesa [152] and Skone et al [153]. The 
nonlocal contributions to the dielectric response were fully 
taken into account by explicitly computing perturbed GKS 
orbitals in a self-consistent way, by means of the coupled-
perturbed Kohn–Sham method [154]. The computed dielectric 
constants turned out to be in much better agreement with exper-
iment compared to the values obtained neglecting local field 
effects or treating them at the semilocal DFT level, achieving 
an accuracy comparable with fully self-consistent GW calcul-
ations [155]. In the work of Skone et al, [152] a computational 
protocol was defined to evaluate α and ε∞ in a self-consistent 
way, based on the relationship in (4.3), and its performance 
was assessed with regard to the prediction of band gaps of a set 
of semiconductors and insulators. The resulting self-consistent 
hybrid (sc-hybrid) functional has been successfully applied to 
the study of very diverse condensed systems such as pristine 
and defective oxides [152, 50], [156], titanates [151], nitrides 
[157, 158], aqueous solutions [139], and defects in materials 
for quantum information [159].

Along similar lines, the parameters defining range-separated 
hybrid functionals have been related to the dielectric properties 
of extended systems. The prototype of these system dependent 
range-separated hybrids is the screened exchange sX-LDA 
functional, for which the Thomas-Fermi screened interaction 
replaces the Coulomb kernel in the EXX energy expression

1
r → exp(−kTFr)

r , (4.4)

where the Thomas-Fermi wavevector kTF = 2(3ρvv/π)1/6,  
depending on the average valence electron density ρv, is 
the system-dependent EXX range. Self-consistent screened 
exchange functionals based on a Penn model for the dielectric 
constant were developed and used in the works of Shimazaki 
and Asai [146, 160, 161], In [162] the authors explored the 
parameter space of short range functionals (defined by the 
exchange fraction and the screening length), drawing a connec-
tion with quasiparticle theory to explain the good performance 
of HSE functionals in predicting semiconductor band gaps 
and molecular formation energies. Skone et al [163] devised 
a range-separated di electric-dependent hybrid (RS-DDH) in 
which the long-range exchange fraction was set equal to 1/ε∞ 
as obtained in the sc-hybrid, while the short-range fraction 
was fixed to 0.25 as in PBE0; the screening length was evalu-
ated using three different nonempirical definitions, showing 
however that the computed materials properties depend very 
weakly on the specific choice of this parameter. For a better 
comparison with sx-LDA, in the following the Thomas-Fermi 
screening length parameter is considered.

In table 2 we collect the Kohn–Sham band gaps reported 
in the recent literature for a set of semiconductors and 
insulators (excluding transition metal oxides, which are 
discussed in section 5), ranging from covalent sp semicon-
ductors to strongly ionic compounds. Values computed using 
system independent (PBE0, B3PW91, HSE06) and system 
dependent hybrids (sc-hybrid, sx-LDA, RS-DDH) are com-
pared. The mean absolute errors evaluated with respect to 
experimental values suggest that, for either classes of full-
range and range-separated hybrids, system dependent func-
tionals give band gaps in better agreement with experiments. 
For example, sc-hybrid tends to correct the overestimated 
(underestimated) values obtained with PBE0 for small (large) 
gap systems. It is however clear that the sc-hybrid perfor-
mance is not equally satisfactory for all materials: as shown 
in [162], it tends to overestimate (underestimate) the gap of 
materials with di electric constant smaller (larger) than 4–5, 
corresponding to large (small) gap materials, at variance with 
the behavior of PBE0. RS-DDH performs best among all the 
methods compared. The improvement of RS-DDH over sc-
hybrid may be ascribed to a better description of the strongly 
screened Coulomb exchange interaction in condensed sys-
tems. In fact, a similar improvement is observed even for 
system independent hybrids when screening effects are taken 
into account (HSE06 versus PBE0).

4.3. Alternative approaches to system dependent hybrids for 
semiconductor surfaces and interfaces

The methods reviewed so far propose a definition of a system 
dependent exchange fraction which is theoretically justified 
by comparison with approximate forms of the electronic self-
energy within the many body GW framework. As far as con-
cerns electronic structure calculations for bulk crystals, the 
relation α = 1/ε∞ is well justified and gives band gaps and 
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dielectric constants in good agreement with experiment, espe-
cially if evaluated self-consistently.

However, the same approach is not applicable when strong 
spatial variations of the dielectric response are present in the 
system. This is typically the case for semiconductor surfaces 
and interfaces, and, to a lesser extent, for defects in bulk crys-
tals. In the latter case, one would not expect the dielectric 
function to deviate considerably from its value in the pristine 
(bulk) material, provided that the defect concentration is small 
enough; dielectric-dependent functionals may thus be safely 
used to calculate defects properties in the usual supercell 
approach [155]. However, in the case of surfaces and inter-
faces, the problem is not easily overcome.

The application of hybrid functionals to surface science 
problems has increased considerably in the past 10 years. In 
fact, the issues posed by the self-interaction error crucially 
affect the description of surface chemical processes of rel-
evance for, e.g. catalysis and photoelectrochemistry [9]. For 
example, it has been early pointed out that the use of hybrids 
is essential to correctly describe localized electronic states at 
prototypical oxide surfaces for photocatalysis such as TiO2 
[164]. However, hybrids do not always perform better com-
pared to standard semilocal functionals in surface science 
studies. For example, for the important problem of the CO 
adsorption on transition metal surfaces, the performance of 
different hybrids (HSE and B3LYP) depends more critically 
on the choice of the semilocal part of the functional (PBE and 
BLYP), rather than on the inclusion of exact exchange [165]. 
In general, hybrid functionals should be chosen whenever an 
accurate description of charge localization and transfer at the 
surface is pursued. One may think of d electrons at cation 

sites on transition metal oxide surfaces as a prime example 
of fundamental importance to understand electrochemical 
mechanisms at interfaces. More often, in the study of cata-
lytic materials, the less computationally expensive DFT  +  U 
approach is adopted to correct self-interaction, often leading 
to satisfactory results [167].

With regard to the more basic problem of predicting the 
electronic structure of pristine semiconductor surfaces, the 
design of hybrid functionals suited for inhomogeneous sys-
tems and inspired to many-body self-energy approximations 
such as GW would be a fundamental step forward, similarly 
to what self-consistent hybrids represent for electronic struc-
ture calculations of bulk crystals. To the best of our knowl-
edge, this question has been mostly unexplored until now. 
However, the influence of α on the band alignment at semi-
conductor heterojunctions and on the related issue of defect 
energy levels positions has been quite extensively investi-
gated. In fact, both the problems can be reduced to the one 
of computing accurate band edge positions [168]. In one of 
the earliest invest igations concerning this problem, Alkauskas 
et al [169] studied the band offset at several semiconductor-
oxide interfaces by first optimizing the exchange fraction in 
PBE0 so as to reproduce the experimental bulk band gap for 
each material separately; an interface calculation with the 
exchange fraction set to the average between those of the 
semiconductor and the oxide phases was then performed to 
obtain a common  reference for band edge alignment. Using 
this approach, remarkable improvement over standard PBE0 
(α fixed to 0.25) was achieved in the predicted band edge off-
sets for the Si/SiO2, 4H–SiC/SiO2, and Si/HfO2 heterojunc-
tions. In a subsequent work, Komsa et  al investigated the 

Table 2. Kohn–Sham band gaps (eV) of selected semiconductors and insulators computed with full-range and range-separated hybrid 
functionals discussed in the text. Band gaps are evaluated at the experimental geometry. Values obtained from GGA-PBE and one-shot GW 
calculations using PBE as starting point (G0W0) are reported. The experimental values (exp.) are the those reported in [163]. The mean 
absolute error (MAE, eV) and mean absolute relative error (MARE, %) with respect to experimental values are reported.

Full-range hybrids Range-separated hybrids

Phase PBEa PBE0a B3PW91b sc-hybrida HSE06b sx-LDA RS-DDHa G0W0 Exp.

Ge Diamond 0.00 1.53 1.03 0.71 0.74 0.69c 0.50e 0.74
Si Diamond 0.62 1.75 1.62 0.99 1.21 1.07c 1.02 1.17e 1.17
C Diamond 4.15 5.95 5.80 5.42 5.43 5.38c 5.45 5.59e 5.48
SiC Zincblende 1.37 2.91 2.71 2.29 2.32 2.52d 2.32 2.25e 2.39
AlP Zincblende 1.64 2.98 2.85 2.37 2.42 2.21c 2.42 2.49e 2.51
GaN Zincblende 1.88 3.68 3.39 3.26 3.08 3.27c 3.30 2.80f 3.29
ZnS Zincblende 2.36 4.18 3.44 3.82 3.44 3.74c 3.86 3.29f 3.91
BN Zincblende 4.49 6.51 6.29 6.33 5.91 6.12c 6.34 6.19e 6.40
AlN Wurtzite 4.33 6.31 6.23 5.74 6.09c 6.23 4.81g 6.28
MgO Rocksalt 4.80 7.25 6.93 8.33 6.59 7.72c 8.22 7.08d 7.83
LiCl Rocksalt 6.54 8.66 8.59 9.62 8.15 9.54 9.27e 9.4
LiF Rocksalt 9.21 12.18 15.69 13.28 13.27c 15.18 13.27f 14.2

MAE 1.85 0.58 0.41 0.25 0.45 0.22 0.18 0.43
MARE 41.36 21.32 14.73 4.55 6.76 4.98 3.32 9.67

a Skone et al [163, 153].
b Supporting information of [166].
c Clark and Robertson [133].
d Moussa et al [162].
e Chen and Pasquarello [92].
f Shishkin and Kresse [61].
g Chen and Pasquarello [79].
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effect of the exchange fraction and the treatment of the long-
range exchange interaction on the bulk band edge shifts for Si, 
SiC, HfO2 and SiO2 [170]; it was shown that for an optimized 
α parameter reproducing the experimental band gap, the band 
edge shifts calculated with the PBE0 and HSE functionals dif-
fered by at most 0.2 eV in the case of the large gap insulator 
SiO2. Very close agreement between the two methods within 
the mixed scheme proposed in [168] was also obtained for the 
band offset at the Si/SiO2 interface. However, it was pointed 
out in a later investigation encompassing a broader set of mat-
erials [41] that tuning the exchange fraction to reproduce the 
bulk band gap obtained in G0W0 does not necessarily imply 
that the computed band edge positions will be consistent with 
those calculated at the GW level; in fact, deviations between 
the two methods were found to be as large as 0.5–1 eV for 
wide gap insulators such as HfO2, MgO, and SiO2. In a sub-
sequent work, Chen and Pasquarello proposed a nonempir-
ical protocol for fixing a material dependent α, requiring the 
optimized PBE0-like functional PBE0(α) to give the same 
band gap obtained in a subsequent G0W0 calcul ation on top 
of PBE0(α); [79] this requirement is equivalent to defining 
an optimal starting point for one-shot G0W0 calcul ations. The 
ionization potentials of a set of semiconductor surfaces (Ge, 
Si, C, GaAs, GaP, ZnSe, ZnO, TiO2) were calculated using 
this method, which was compared with the results of the 
empirically tuned functional reproducing the exper imental 
gap. It was found that the empirically tuned PBE0 performs 
slightly better than PBE0(α), while both methods clearly give 
better results than PBE. Of course, an empirical tuning may be 
biased by the lack of clean experimental data, and hence the 
definition of a theory consistent approach to fix the exchange 
fraction is certainly preferable.

Recently, Hinuma et al reported the computed band edge 
positions for several semiconductor surfaces, as well as the 
natural band offset at a few zincblende semiconductor hetero-
junctions, comparing different hybrid DFT and GW schemes 
[171]. They used dielectric-dependent hybrid functionals, 
where α was set to the inverse dielectric constant computed at 
the PBE  +  U and PBE0 level for the bulk material; the exact 
exchange potential was evaluated non self-consistently, using 
the PBE wavefunctions and charge densities. The results 

for band alignment at surfaces were compared to the par-
tially self-consistent GW0 approach and experimental data. 
Dielectric-dependent hybrids showed good agreement with 
experimental ionization potential data, improving over HSE 
and, especially, GW0 for most of the materials (figure 5); the 
poor performance of the GW0 in predicting band edges may 
be related to the neglect of vertex corrections, as was pointed 
out in earlier studies [91, 172].

In conclusion, for the problem of computing the elec-
tronic structure of surfaces and interfaces, material dependent 
hybrids have been mainly parametrized using bulk properties 
as a target, and a formulation based on the intrinsic character-
istics of these inhomogeneous systems is presently lacking. 
In this regard, it would be ideal to build position dependence 
directly into the functional, so as to take into account the spa-
tial variation of the dielectric properties in a natural way; a 
similar approach have recently been proposed for bulk sys-
tems [173], but its generalization to surfaces has not been yet 
pursued.

4.4. System dependent hybrid functionals for finite systems

It is worth briefly mentioning a few approaches that have been 
proposed to construct nonempirical system dependent hybrid 
functionals tailored to finite systems, such as, for example, 
molecules and nanoparticles. Several different ideas have 
been developed over the past years. An interesting approach 
considered a range-separated hybrid in which the range sep-
aration parameter was tuned to enforce the validity of the 
Koopmans’ theorem (or equivalently the correspondence 
with excitation energies computed with the ΔSCF method) 
[174]; the accuracy of this approach was demonstrated for 
molecules, nanocrystals [174], and molecular crystals [151]. 
A similar idea was applied in the context of time-dependent 
DFT to compute optical spectra of molecules as well as solid 
state systems, although in the latter case the parameters in the 
functional were chosen semiempirically [175]. Atalla et  al 
[176] instead proposed to optimize the exchange fraction α 
so as to minimize the quasiparticle correction, obtained at the 
G0W0 level, for the highest occupied molecular orbital. This 
scheme is reminiscent of the nonempirical tuning procedure 

Figure 5. Ionization potential computed for several semiconductors and insulators at different levels of theory: GW0 on top of PBE (GW0@
PBE); non self-consistent (nsc) dielectric-dependent hybrids with exchange fraction fixed at 1/ε∞, and the dielectric constant computed 
using PBE0 (εPBE0) and PBE  +  U within the random phase approximation (εPBE-RPA); non self-consistent HSE06 (nsc-HSE06); semilocal 
PBE. Original data are reported in [170] (courtesy of F. Oba).
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presented in [60], which was however defined for extended 
systems. Recently, a generalization of dielectric-dependent 
hybrid functionals to finite systems was developed [177], 
in which the exchange fraction was evaluated as the ratio 
between the matrix elements of the statically screened and 
the bare exchange self-energies. This scheme, which avoids 
the difficulties posed by the definition of a dielectric constant 
for finite systems, can be made self consistent [178] and for 
condensed systems reduces to the dielectric-dependent hybrid 
functional described in [152]. It was shown to yield accurate 
optoelectronic properties of organic and inorganic molecules, 
as well as nanocrystals.

5. Electronic structure of oxide materials from 
material-dependent hybrid functionals

5.1. Bulk properties of d0 and correlated transition metal 
oxides

The electronic structure of oxide materials, and particularly 
that of correlated transition metal oxides, is notably chal-
lenging for density functional methods. This is mainly due 
to the often mixed itinerant (from oxygen s and p orbitals) 
and localized (from metal cation d or f orbitals) character of 
the band edges. Consequently, it is often preferable to treat 
the localized subset of electronic states separately by using 
models for correlated electrons, within e.g. DFT  +  U, or, at a 
higher level of theory, DMFT.

Alternatively, hybrid functionals treat delocalized and 
localized states on the same footing, by applying the orbital 
dependent Hartree–Fock exchange potential to either. 
Although hybrids are not specifically designed to improve 
the description of electron correlation over semilocal den-
sity functionals, the use of exact exchange leads to a better 
description of highly localized states important for a qualita-
tively correct description of the electronic and magnetic struc-
ture of correlated oxides.

Hybrid functionals have been used to study transition metal 
oxides since their first applications to extended systems. Wide 
gap oxide semiconductors have been extensively investi-
gated using hybrid methods (see [50] and references therein), 
owing to their broad use in catalysis and optoelectronics and 
the importance of predicting accurate electronic properties 
for those applications. The more challenging magnetic rare 
earth oxides [121] and actinide oxides [179], as well as trans-
ition metal monoxides (MnO, FeO, CoO, NiO) [71, 123, 124, 
133] have been studied using both full-range and screened 
exchange hybrids, obtaining qualitatively good results in 
terms of the predicted magnetic order and the insulating prop-
erties of the ground state. Iori et al investigated the electronic 
structure of binary (VO2, V2O3, Ti2O3) and more complex per-
ovskite oxides (LaTiO3, YTiO3) showing that material inde-
pendent hybrids such as HSE tend to overestimate the small 
exper imental gap (0.2–0.7 eV) of these magnetic semicon-
ductors, although providing a qualitatively correct descrip-
tion of the correlated electronic states [180]. However, for the 
description of more complex phenomena such as the metal 
insulator transition in VO2, even hybrid functionals may not 

be sufficient [181], and one thus has to resort to explicitly cor-
related methods like quantum Monte Carlo in order to capture 
the correct physics [182].

As for sp semiconductors discussed in the previous sec-
tions, dielectric-dependent hybrid functionals generally pro-
vide a better quantitative description of the band gap and the 
electronic structure, although with some exceptions. Binary 
d0 and correlated transition metal oxides have been investi-
gated by Skone et al [152, 162] and Gerosa et al [50] using 
self-consistent hybrid functionals. In table  3 the computed 
fundamental gaps for a selection of such oxides is reported. 
Overall, the sc-hybrid functional gives gaps closer to experi-
ment compared to PBE0, which overestimates them for 
almost all the considered materials. This improvement is more 
evident for d0 metal oxides, whereas for correlated oxides the 
performance is less satisfactory. In fact, while the band gap 
of CoO is overestimated by more than 1 eV, that of MnO and 
NiO is smaller than experiment by 0.2–0.3 eV. This behavior 
does not correlate well with the values of the experimental 
and theoretical dielectric constants (table 4), based on what 
one would expect from the relationship α = 1/ε∞ (increasing 
gap for decreasing dielectric constant). In fact, if one looks 
at the experimental gap and dielectric constant, this monoto-
nous relationship is not satisfied; even considering the com-
puted values, and assuming that the α = 1/ε∞ relationship 
still holds, then the widely verified proportionality between α 
and the gap would be lost (in fact, CoO and MnO have essen-
tially the same band gap, despite having appreciably different 
dielectric constants). Thus, dielectric-dependent hybrids seem 
to perform in an unconventional way for correlated oxides. 
This behavior may be related to a breakdown of the validity 
of the arguments for the inverse proportionality of α with the 
dielectric constant, which are rooted into many-body theory 
and the quasiparticle description of electronic states.

Recent investigations on non-correlated metal oxides 
(Cu2O, TiO2, ZrO2, SnO2, ZnO) using dielectric-dependent 
and self-consistent hybrids are reported in the works of Viñes 
et  al [183] and Fritsch et  al [184], confirming the satisfac-
tory performance in predicting band gaps as well as structural 
properties. In [50], several crystallographic phases of ZnO, 
TiO2, ZrO2, and WO3 were studied, showing that dielectric-
dependent hybrids are able to reproduce well the gap of phases 
with very different dielectric constants, such as those of cubic 
and room temperature monoclinic WO3. However, the use of 
these functionals to predict phase stabilities (in terms of dif-
ferences in total energies) gave less satisfactory results, par-
ticularly when the dielectric constant (and hence α) varies 
over a wide range of values. Instead, when the difference in α 
between different phases is not too large, the energetics is rea-
sonably well described, as also observed for the stoichiometry 
reduction from TiO2 to Ti2O3.

With regard to more complex oxide materials, the screened 
exchange HSE functional with an optimized α parameter have 
been systematically applied to the study of the structural, elec-
tronic and magnetic properties of 3d perovskites belonging 
to the LaMO3 (M  =  Sc–Cu) family, yielding electronic struc-
tures in good agreement with experiments and a qualitatively 
correct description of the character of the electronic ground 

J. Phys.: Condens. Matter 30 (2018) 044003



M Gerosa et al

16

state [185]. An extensive review of applications of hybrid 
functionals to perovskites may be found in [186].

5.2. Band alignment at stoichiometric oxide surfaces  
and interfaces

The study of oxide surfaces and interfaces using dielectric-
dependent hybrids has been quite limited, in part due to the 
conceptual difficulties faced when applying this method to 
inhomogeneous systems (section 4.3), in part because of the 
challenges posed by the description of the electronic struc-
ture of oxides even in their bulk, pristine phases (section 4.1). 
Here we give an account of the few studies that have been 
performed so far in this direction. The effect of the exchange 
fraction on the band edge shift with respect to PBE results 
for a few transition metal oxides (ZnO, TiO2, HfO2) and wide 
gap oxide insulators (SiO2, MgO) was investigated in [40, 
60, 169]. As already discussed in section 4.3, tuning α so as 
to match the computed G0W0 band gap does not always give 
good results in terms of band edge levels. For HfO2, SiO2 and 
MgO the discrepancy with GW is particularly large: in fact, an 
optimally tuned hybrid functional gives a valence band (VB) 
edge position deeper by 0.4 to 0.7 eV compared to GW band 

edges [40]. In [60], an optimal hybrid DFT starting point was 
adopted for G0W0 calculations considering the experimental 
band gap as the target property to be reproduced. While for 
ZnO, HfO2, SiO2 and MgO, the VB edge positions computed 
with the two empirically tuned hybrid DFT and GW methods 
match almost perfectly (differences  <  0.1 eV), for TiO2 the 
discrepancy turned out to be more than 0.4 eV. Using the non-
empirical tuning procedure discussed in section 4.3, this dis-
crepancy was only slightly reduced to 0.3 eV. In the same work, 
the ionization potentials of the wurtzite ZnO(1 0 1 0) and rutile 
TiO2(1 1 0) surfaces were computed using both empirically and 
nonempirically tuned hybrids, giving 7.88 eV and 8.12 eV for 
ZnO (experimental value 7.82 eV), and 8.14 eV and 8.51 eV for 
TiO2 (experimental values 8.0, 8.2 eV) respectively.

Hinuma et al included ZnO and MgO in the set of semi-
conductor surfaces studied with dielectric-dependent func-
tionals, finding good agreement with the experimental 
ionization potentials (see figure  5), especially for ZnO; 
[170] the di electric-dependent hybrid however was found 
to give substanti al discrepancies with GW0@PBE results, in 
accord with the general tendency evidenced in the studies of 
Pasquarello and coworkers. A more systematic study of band 
edge positions of transition metal oxide surfaces was per-
formed by Toroker et al using standard PBE0 and HSE func-
tionals [187]. For the considered set of oxides (MnO, FeO, 
Fe2O3, NiO, Cu2O) the position of the VB maximum com-
puted with PBE0 was found to be 0.3–0.5 eV deeper com-
pared to HSE, due to the neglect of the long-range part of the 
exact exchange interaction in the latter. Even PBE0, however, 
predicted the VB positions to be too shallow with respect to 
experiments, although the lack of clean experimental data 
hindered a careful assessment. Other more system targeted 
hybrid functional studies of the electronic structure of oxide 
surfaces have appeared in the recent literature for rocksalt 
oxides [188], perovskite trans ition metal oxide surfaces and 
interfaces [77], and nickel-iron hydroxides [189].

Table 3. Fundamental Kohn–Sham band gaps (eV) of selected wide gap oxide semiconductors and transition metal monoxides computed 
with full-range and range-separated hybrid functionals discussed in the text. Band gaps are evaluated at the experimental geometry, except 
for values marked with a dagger (†), for which the optimized geometry is considered. Values obtained from GGA-PBE and one-shot GW 
calculations using PBE as starting point (G0W0) are reported. The experimental values (exp.) are the those reported in [163]. The mean 
absolute error (MAE, eV) and mean absolute relative error (MARE, %) with respect to experimental values are reported.

Phase PBE PBE0 B3PW91c sc-hybrid HSE06 RS-DDHb G0W0 Exp.

TiO2
a Anatase 2.18 4.23 3.66† 3.59 3.73 3.42

TiO2 Rutile 1.81b 3.92b 3.05b 3.39a 3.17 3.27e 3.3
ZnOa Wurtzite 1.07 3.41 4.07†, 3.78b 2.46a 3.67 3.06a 3.44
ZrO2

a Tetragonal 4.00 6.33 5.66† 5.61 5.87 5.78
HfO2 Monoclinic 4.32b 6.65b 6.68b 5.83d 6.67 5.67e 5.84
WO3

a Monoclinic 1.91 3.74 3.34†, 3.47b 3.39a 3.49 3.34a 3.38
CoO Rocksalt 0.00b 2.82b 3.06 3.62b 2.82c 3.98 3.4f 2.5
MnO Rocksalt 1.12b 4.77b 4.79 3.60b 4.77c 3.49 3.4f 3.9
NiO Rocksalt 0.97b 4.09b 3.92 4.11b 4.09c 4.15 4.7f 4.3
FeO Rocksalt 0.00b 2.63 2.41c 2.2f 2.4

a Gerosa et al [51].
b Skone et al [163, 153].
c Supporting Information of [166].
d Chen and Pasquarello [41].
e Chen and Pasquarello [79].
f Rödl et al [70], G0W0@HSE.

Table 4. Electronic dielectric constant ε∞ computed with the 
self-consistent hybrid (sc-hybrid) functional and compared to 
experiment (exp.). Values are taken from [153].

Phase sc-hybrid Exp.

TiO2 Rutile 6.56 6.34
ZnO Wurtzite 3.46 3.74
HfO2 Monoclinic 3.97 4.41
WO3 Monoclinic 4.72 4.81
CoO Rocksalt 4.92 5.35
MnO Rocksalt 4.45 4.95
NiO Rocksalt 5.49 5.76
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Finally, few studies involving oxide interfaces have been 
performed using dielectric-dependent or optimally tuned 
hybrid functionals. Except for the already discussed works 
of Pasquarello and coworkers, mostly considering wide gap 
insulators (HfO2, SiO2) and their interfaces with other semi-
conductors (see section  4.3), empirically tuned functionals 
have been used to calculate the band offset at the Ge/GeO2 
heterojunction [190], and the band alignment at the interface 
between ZnO and the P3HT polymer, a system of interest for 
photovoltaic applications [191].

5.3. Hybrid functional calculation of defects in oxides

In the vast majority of technological applications, oxide semi-
conductors are not used in their pure and fully stoichiometric 
form but, rather, are functionalized by introduction of specific 
defects and dopants. The reason is that new electronic, optical, 
magnetic and chemical properties emerge when impurity 
atoms or intrinsic defects are incorporated in the lattice. The 
comprehensive understanding of the physical and chemical 
properties of defective oxides is a fundamental requirement 
for a rational and efficient design of new doped semicon-
ducting oxides with tailored properties. This may lead to a 
more efficient exploitation of these complex systems and to 
an expansion of the range of their applications.

However, a very high accuracy is required if one is inter-
ested in using computational techniques to investigate the 
electronic structure and properties of defective oxides and 
to compare the results to experimental measurements. In 
this respect, the standard approach to simulate point defects 
in metal oxides has been rooted within DFT and the super-
cell model. Thermodynamic stability of defects is rather well 
described by local and semilocal density functional methods 
[192–194]. On the contrary, similarly to the band gap problem 
described above, standard DFT methods tend to fail in 
describing the position of the defect states in the band gap, 
mostly because they overestimate the degree of defect state 
delocalization as a consequence of excessive electron self-
interaction they provide [195–197].

In this scenario, ‘classical’ hybrid functionals (B3LYP, 
PBE0, HSE06, etc), and, more recently, dielectric-dependent 
hybrid functionals, have been successfully applied to compute 
impurity and defect states in defective oxide semiconductors.

Although it is a common practice, to estimate the position 
of the energy levels introduced in the band gap by defects 
using the one-particle Kohn–Sham eigenvalues is a rather 
crude approximation. The results are very approximate and, 
in general, compare poorly with experimental optical absorp-
tion or emission spectroscopic data. In principle, an ideally 
exact exchange-correlation functional could provide exact 
defect state energies by computation of the defect formation 
energies for different charge states of the defect, i.e. charge-
transition levels or CTLs [198–201]. These quantities can be 
directly compared to experimentally measured excitation and 
emission energies for defective oxides. In practice, however, 
given the limit of current DFT approximations, total energies, 
and thus also CTLs, are affected by some error. Of course, 

the more accurate is the exchange-correlation approximation 
used, the better are the corresponding CTLs. In this respect, 
the use of exact exchange hybrid DFT methods is a promising 
approach since they are known to provide band gap values in 
more quantitative agreement with experiments, as discussed 
in previous sections. These methods include unscreened, 
screened, and dielectric-dependent functionals.

The CTLs formalism is based on the calculation of the for-
mation energy of the oxide defect under investigation, e.g. an 
oxygen vacancy, at fixed conditions of oxygen partial pressure 
and at T  =  0 K. This will only depend on the chemical poten-
tial of the electrons (Fermi energy) that can be exchanged 
between the defect and the host crystal as a consequence of 
some external perturbation, such as light irradiation. The 
optical transition level [µopt(q/q′)] is defined as the Fermi 
energy at which the formation energy of the defect 

[
Ef

D

]
 in the 

charge states q and q′ become equal. Optical (vertical) excita-
tions obey the Franck–Condon principle, therefore the atomic 
configuration is kept frozen in the initial conditions. The 
optical transition level computed with reference to the top of 
the valence band (εv) is expressed by the following equation:

µopt (q/q′) =
ED,q′−ED,q

q−q′ − εv . (5.1)

Adiabatic transitions can be described by the thermodynamic 
transition level [µtherm(q/q′)] where ionic relaxations (of 
energy Erel) are taken into account as follows:

µtherm (q/q′) = µopt (q/q′)± Erel. (5.2)

Oxygen vacancy is a common defect in oxides, especially 
when the sample is prepared in reducing conditions or under-
goes high temperature annealing processes. Other typical 
intrinsic defects are interstitial metal atoms (Mi), interstitial 
oxygen (Oi), OH groups, peroxo groups, etc. Substitutional 
impurities, which replace either the lattice metal cations or 
oxygen anions, may also be present.

In the following we will present an overview on how clas-
sical hybrid functionals and dielectric-dependent hybrid func-
tional methods have been exploited to improve the description 
of defects states in the gap of oxide materials (in terms of 
CTLs formalism), achieving a substantial agreement with 
experimental data, when available for comparison.

Figure 6. Optical charge transition levels for the single ionization 
of a neutral oxygen vacancy in rutile TiO2, computed with HSE 
[211], B3LYP [197], and sc-hybrid [156]. The black lines represent 
the position of the transition level in the gap (blue and red lines 
represent the valence band maximum and the conduction band 
minimum, respectively). The energy required to excite one excess 
electron from the defect state to the conduction band is reported.
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The situation regarding the understanding of oxygen vacan-
cies in transition metal and rare earth oxides from a theoretical 
perspective was reviewed in 2007 by Ganduglia-Pirovano et al 
[202]. In their conclusions, the authors pointed out that: ‘Very 
recent work on the electronic structure of defective TiO2(1 1 0) 
surfaces [163, 203] using periodic models and hybrid func-
tionals indicates that we can expect an increased interest in 
this type of calculation in the near future’. With that they 
foresaw what actually happened in the next ten years. The 
rather slow diffusion of hybrid functionals for the description 
of defective materials was related to their high computational 
cost when a plane wave basis set is used. This is no longer 
true if one uses a localized basis set (e.g. Gaussian functions 
as in the CRYSTAL code). With the inclusion of hybrid func-
tionals in popular plane wave based comp uter codes (e.g. 
VASP, Quantum ESPRESSO, etc) and the increase in comp-
uter power, the use of hybrid functionals has grown regularly 
and it has become the standard nowadays to treat this kind of 
problems.

Some works based on hybrid functionals appeared between 
2007 and 2009, and the results were compared to GGA and 
GGA  +  U methods for the description of intrinsic defects 
in TiO2 [194, 204–206], and in perovskites, such as PbTiO3, 
PbZrO3 and SrTiO3 [207]. In these studies, the electronic 
properties of defects were compared on the basis of the one- 
particle Kohn–Sham energies.

Starting from 2008 the first works appeared, where the 
CTLs formalism was applied to defective oxides in the frame-
work of hybrid density functional methods, recognizing their 
superior capabilities in the description of the defect states posi-
tion in the band gap. One of the most studied systems in this 
respect has been the oxygen vacancy (VO) defect in ZnO [208, 
209]. This is probably the most controversial native defect in 
ZnO, since for a long time it has been considered responsible 
for the unintentional n-type conductivity of ZnO, and classi-
fied as a shallow donor species, whereas accurate quantum 
mechanical calculations indicated it as a deep donor. Since 
many theoretical studies have been dedicated to this problem, 
the oxygen vacancy in ZnO can be considered nowadays a 
prototype system for the investigation of deep and shallow 
defect states in oxide semiconductors.

The first work by Kresse and coworkers [210] presented 
defect energetics obtained with the HSE06 hybrid functional 
which are consistent with the relevant experimental observa-
tions, without resorting to any empirical correction for the 
valence and conduction band positions. Later, Agoston et al 
[212] applied the unscreened PBE0 and the screened HSE06 
hybrid functionals to compute CTLs for VO in In2O3, SnO2 
and ZnO and compared the results with LDA and GGA calcul-
ations. The main conclusion was that even after a rigid shift 
correction for the band gap, LDA and GGA methods cannot 
reproduce the hybrid functional results because they underes-
timate the relaxation energy at the defect site. One year later, 
Zunger and coworkers [135] made a similar comparison but 
considering also a different portion of exact exchange com-
pared to the original one in HSE06. They also studied other 
intrinsic defects, such as for example the Zn vacancy. In that 
work they reported that, whereas the various functionals give 

remarkably uniform results for the formation energies of the 
charge neutral lattice vacancies of ZnO, significant differ-
ences were observed when comparing CTLs. Both these two 
latter studies were performed using a plane wave basis set and 
a very limited k-point sampling due to the extremely large 
cost to compute the nonlocal term for the exact exchange on a 
large supercell. Just in parallel, another work appeared where 
some intrinsic and extrinsic defects in ZnO were studied by 
means of a localized atomic basis set approach [135]. The 
results are quite in line with plane wave calculations, espe-
cially regarding the important role played by the large lat-
tice relaxation, particularly in the case of the doubly charged 
vacancy, which favors a negative-U character for VO.

Since the default values for the portion of exact exchange 
(α), e.g. α  =  0.20 in B3LYP, and α  =  0.25 in PBE0 or HSE06, 
do not always provide a band gap value in close agreement 
with experiments, a pragmatic solution has been proposed to 
vary the value of α so as to fit the experimental band gap. 
When this is done for the case of ZnO [213] an α  =  0.32 is 
found. However, a parameter value that fits the band gap, not 
necessarily provides a quantitative description of other prop-
erties, such as the energetics of the oxygen vacancy in ZnO. 
Furthermore, the predictive value of such an approach is very 
limited since it requires an accurate knowledge of the meas-
ured band gap of every material, making studies of unknown 
materials impossible. The concept of varying the α parameter 
was further developed by Bruneval and coworkers [214], who 
studied the dependence of the band edges positions and of the 
CTLs on the α value in the case of the screened hybrid func-
tional HSE06 for some defects in ZnO and in CdO. The abso-
lute position of the band edges and of the defect states remains 
a critical issue. In this respect, solutions have been proposed, 
based also on calculations for defective ZnO. For example, 
one could resort to a common reference such as the average 
local electrostatic potential [215]. This approach was found to 
lead to results which are not sensitive to the particular choice 
of α.

CTLs for oxygen deficient ZnO, SnO2 and TiO2 by hybrid 
functional (HSE06) calculations have been compared by 
Janotti et  al to those obtained with the LDA+U approach 
[216]. The former method was found to be more general and 
more accurate in the description of both structural and elec-
tronic properties and in some cases even essential in order 
to get a correct picture. Among the hybrid functionals, the 
screened HSE06 is considered to be the best performing for 
the study of defect states in oxide semiconductors, especially 
when shallow states are involved. There is some difficulty 
by unscreened hybrid functionals to correctly predict and 
describe this type of states, which was proposed to be related 
to the long-range exchange interaction [217].

HSE06 thermodynamic transition levels for defective ZnO 
have been systematically compared [218] to those obtained 
with the many body ab initio diffusion quantum Monte Carlo 
(DMC) method. The two DFT approaches yield a correct 
qualitative description of these materials. For instance, both 
methods showed similar trends for phase stability and defect 
energetics under n-type conditions. However, the formation 
energy of defects in ZnO can differ by over 0.5 eV when 
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evaluated with DMC and the HSE06 functional, whereas the 
CTLs are in the same range. In any case, the HSE06 hybrid 
functional was found to outperform all DFT  +  U approaches 
considered [217].

Similar studies as those described above for the prototype 
material, defective ZnO, have been performed for several 
other defective semiconducting or insulating oxides. Here we 
provide a list of references, not supposed to be exhaustive, 
for studies of CTLs from hybrid functional calculations: SiO2, 
[147, 167, 169] HfO2, [204–206, 219], TiO2 [196, 215, 220, 
221] ZrO2, [214, 218, 222], SnO2, [210, 215] Al2O3, [218] 
LiNbO3 [223], LiMO2 (M  =  Co, Ni) [224, 225], CdO [213, 
226], WO3 [227, 228], β-MnO2 [229], CeO2 [230].

The dependence of the defect states position in the gap 
on the method used, and in particular on the amount of exact 
exchange in the exchange-correlation functional (see, e.g., 
figure 6), is clearly a critical aspect that casts some doubts on 
the general applicability of these methods. As we discussed 
before, experience shows that there is no single hybrid func-
tional that is capable to describe at the same level of acc-
uracy, or with the same systematic errors, different kinds of 
defects in different semiconducting and insulating materials. 
For this reason, today there is an increasing interest in how 
self-consistent or di electric-dependent hybrid functionals 
perform with respect to the standard hybrid functional, and 
in particular how these behave when it comes to describe 
the properties of defective systems. Relatively few studies 
seem to exist, but the results are quite promising, indicating 
that such methods can be considered sufficiently robust not 
only to predict proper band gaps (see section 4.1) but also to 
describe finer details, such as the defects states position in the 
band gap. Below we discuss the few examples that have been 
reported in the literature so far.

Oxygen vacancies in metal oxides (rutile and anatase TiO2, 
monoclinic room temperature WO3, and tetragonal ZrO2) have 
been studied using the self-consistent dielectric-dependent 
hybrid functional [155], which had previously demonstrated 
to yield an accurate description of the same pristine oxides 
[50]. The α value was defined for the bulk pristine crystals and 
then applied to the corresponding defective system. Two facts 
justify this procedure: first, this functional properly describes 
many ground state properties, and the presence of point 
defects is expected to have a negligible effect on the dielectric 
properties when their concentration is low. This study showed 
that this novel approach is capable of reproducing the exper-
imentally observed optical and electrical behavior of sub-sto-
ichiometric defective oxides, through a direct comparison of 
excitation and emission energies from computed CTLs and 
experiments. The case of monoclinic WO3 is a bit more com-
plex, being this material highly anisotropic from the structural 
point of view. For this reason, it has been further investigated in 
a subsequent work [231], using larger supercells and varying 
the W–O–W chain orientation for the vacancy site position. A 
different physical behavior was evidenced in this invest igation 
of the optical and magnetic properties, depending on the ori-
entation considered.

The same methodology was applied [232] to the prototyp-
ical problem of the hole localization in Al-doped quartz SiO2. 

In this system the amount of admixed exact exchange in the 
hybrid functional was previously shown [233] to be a crucial 
aspect to properly capture the physical details as known from 
electron paramagnetic resonance spectroscopy (EPR) [234]. 
The self-consistently determined α value (for PBE0 calcul-
ations) is 46%, which is much higher than the standard values, 
but can nicely reproduce experimental EPR parameters, 
although it provides a very poor band structure description. 
Such result highlights the limits of this methodology when 
applied to low-dielectric-constant insulator, in contrast to the 
excellent performances mentioned above for moderate gap 
metal oxides (dielectric constants  ≈4–6).

Similar concerns were discussed by Deak et al [235], con-
cluding that a proper hybrid functional should reproduce not 
only the band gap, but also satisfy the generalized Koopmans’ 
theorem, i.e. the total energy must be a linear function of the 
fractional occupation numbers. The authors showed that if this 
condition is verified, a quantitatively accurate determination 
of defect level positions in the gap is possible for the case of 
β-Ga2O3.

Finally, we shall mention that Conesa [151] has applied 
dielectric-dependent functionals to investigate the effect of 
N-doping on the electronic structure of various zinc titanates 
and Galli and coworkers [158] to spin defects in aluminum 
nitride. These few examples show that there is a potential 
in the use of dielectric-dependent hybrid functionals for 
the study of defective oxides and in particular of the CTLs. 
However, the number of cases discussed in the literature is not 
yet sufficiently ample to draw very general and universal con-
clusions. The main advantage of these kind of functionals is 
that they can be obtained self-consistently, without the need to 
parametrize the method on more or less accurate experimental 
values. A limitation is that the portion of exact exchange 
derived in this way is material dependent, and changes if 
one moves to a different material but even if one considers 
another polymorph of the same material. Since the presence 
of defects, beyond a given concentration, may also result in 
structural changes and phase transitions, this aspect should be 
carefully explored in future studies on defective oxides based 
on dielectric-dependent functionals.

6. Conclusions

In this work, we reviewed recent progress as well as estab-
lished results in the experimental characterization and the 
theoretical description of the optoelectronic properties of 
oxide materials, with particular regard to transition metal 
oxides. A critical discussion of widely used spectroscopic 
techniques has been included, emphasizing the sensitivity of 
the experimentally measured values to the theoretical models 
used to describe the relevant physical effects; understanding 
experimental methods is a necessary prerequisite to a sensible 
benchmarking of theor etical results. On the theoretical side, 
we discussed the accuracy of state-of-the-art ab initio elec-
tronic structure methods in predicting target electronic prop-
erties such as the band gap of bulk oxides and the position of 
band edges at their surfaces, comparing methods rooted in the 
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many-body GW approach and hybrid DFT. Recently proposed 
dielectric-dependent hybrid functionals have been shown to 
give a good description of the electronic structure (funda-
mental band gap) of many oxides, constituting an attractive 
alternative to more computationally demanding many-body 
calculations. However, the description of finer details of the 
electronic structure and optical spectra of these materials 
often requires adopting a fully many-body approach. This is 
particularly true for highly correlated oxides, which repre-
sent an important challenge for the development of improved 
many-body approaches as well.

The performance of these methods in describing defects 
in oxides as well as oxide surfaces has also been discussed. 
While for defects in the bulk phases dielectric-dependent 
hybrid functionals provide satisfactory results, both in terms 
of predicted defect charge stabilities and optical trans ition 
energies, the electronic structure of oxide surfaces (e.g. the 
determination of the ionization potential) poses more chal-
lenges, for which the identification of a proper hybrid func-
tional or many-body approach remains an open question.
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