65 research outputs found

    Predicted antiviral activity of tenofovir versus abacavir in combination with a cytosine analogue and the integrase inhibitor dolutegravir in HIV-1-infected South African patients initiating or failing first-line ART.

    Get PDF
    OBJECTIVES: The WHO recently recommended the use of a new first-line ART containing dolutegravir. We investigated the efficacy of NRTI backbones (tenofovir or abacavir with a cytosine analogue) in low- and middle-income countries where there is significant prior exposure to antiretrovirals and drug resistance to NRTIs. METHODS: Within the treatment-as-prevention study in South Africa, we selected participants with available next-generation sequencing (NGS) data for the HIV-1 pol gene at trial entry; they were either ART initiators (n = 1193) or already established on ART (n = 94). NGS of the HIV-1 pol gene was carried out using MiSeq technology; reverse transcriptase drug resistance mutations (DRMs) were detected at 5% (DRM5%) and 20% (DRM20%) for all 1287 participants. Genotypic susceptibility was assessed using the Stanford HIVDB resistance interpretation algorithm. RESULTS: NRTI DRM20% and DRM5% were detected among 5/1193 (0.4%) and 9/1193 (0.8%) of ART initiators, respectively. There was tenofovir exposure in 73/94 (77.7%) of those established on ART, with full susceptibility to abacavir in 57/94 (60.6%) and 56/94 (59.6%) for DRM20% and DRM5%, respectively, while 67/94 (71.3%) and 64/94 (68.1%) were fully susceptible to tenofovir, respectively. The differences between tenofovir and abacavir were not statistically significant at the 20% or 5% variant level (P = 0.16 and 0.29, respectively). NGS detection of variants at the 5% level increased detection of K65R in both naive and treated groups. One of 607 integrase sequences carried a DRM20% (Q148R). CONCLUSIONS: Dolutegravir with a cytosine analogue plus tenofovir or abacavir appears to have similar efficacy in South Africans naive to ART. NGS should be considered in HIV drug resistance surveillance

    Impact of next-generation sequencing defined human immunodeficiency virus pretreatment drug resistance on virological outcomes in the ANRS 12249 treatment-as-prevention trial

    Get PDF
    Background Previous studies in human immunodeficiency virus (HIV)-positive individuals on thymidine analogue backbone antiretroviral therapy (ART) with either nevirapine or efavirenz have suggested poorer virological outcomes in the presence of pretreatment drug resistance (PDR). We assessed the impact of PDR on virological suppression (VS; <50 copies/mL) in individuals prescribed primarily tenofovir/emtricitabine/efavirenz in rural KwaZulu-Natal within a treatment-as-prevention trial. Methods Among 1557 HIV-positive individuals who reported no prior ART at study entry and provided plasma samples, 1328 individuals with entry viral load (VL) >1000 copies/mL had next-generation sequencing (NGS) of the HIV pol gene with MiSeq technology. Results were obtained for 1148 individuals, and the presence of PDR was assessed at 5% and 20% detection thresholds. Virological outcome was assessed using Cox regression in 837 of 920 ART initiators with at least 1 follow-up VL after ART initiation. Results PDR prevalence was 9.5% (109/1148) and 12.8% (147/1148) at 20% and 5% thresholds, respectively. After a median of 1.36 years (interquartile range, 0.91–2.13), mostly on fixed-dose combination tenofovir/emtricitabine/efavirenz, presence of both nonnucleoside reverse transcriptase inhibitor (NNRTI)/nucleoside reverse transcriptase inhibitor PDR vs no PDR was associated with longer time to VS (adjusted hazard ratio [aHR], 0.32; 95% confidence interval [CI], 0.12–0.86), while there was no difference between those with only NNRTI PDR vs no PDR (aHR, 1.05; 95% CI, 0.82–1.34) at the 5% threshold. Similar differences were observed for mutations detected at the 20% threshold, although without statistical significance. Conclusions NGS uncovered a high prevalence of PDR among participants enrolled in trial clinics in rural KwaZulu-Natal. Dual-class PDR to a mainly tenofovir/emtricitabine/efavirenz regimen was associated with poorer VS. However, there was no impact of NNRTI PDR alone

    AvBD1 nucleotide polymorphisms, peptide antimicrobial activities and microbial colonisation of the broiler chicken gut

    Get PDF
    Abstract Background The importance of poultry as a global source of protein underpins the chicken genome and associated SNP data as key tools in selecting and breeding healthy robust birds with improved disease resistance. SNPs affecting host peptides involved in the innate defences tend to be rare, but three non-synonymous SNPs in the avian β-defensin (AvBD1) gene encoding the variant peptides NYH, SSY and NYY were identified that segregated specifically to three lines of commercial broiler chickens Line X (LX), Line Y(LY) and Line Z. The impacts of such amino acid changes on peptide antimicrobial properties were analysed in vitro and described in relation to the caecal microbiota and gut health of LX and LY birds. Results Time-kill and radial immune diffusion assays indicated all three peptides to have antimicrobial properties against gram negative and positive bacteria with a hierarchy of NYH > SSY > NYY. Calcein leakage assays supported AvBD1 NYH as the most potent membrane permeabilising agent although no significant differences in secondary structure were identified to explain this. However, distinct claw regions, identified by 3D modelling and proposed to play a key role in microbial membrane attachment, and permeation, were more distinct in the NYH model. In vivo AvBD1 synthesis was detected in the bird gut epithelia. Analyses of the caecal gut microbiota of young day 4 birds suggested trends in Lactobacilli sp. colonisation at days 4 (9% LX vs × 30% LY) and 28 (20% LX vs 12% LY) respectively, but these were not statistically significant (P > 0.05). Conclusion Amino acid changes altering the killing capacity of the AvBD1 peptide were associated with two different bird lines, but such changes did not impact significantly on caecal gut microbiota

    DMTs and Covid-19 severity in MS: a pooled analysis from Italy and France

    Get PDF
    We evaluated the effect of DMTs on Covid-19 severity in patients with MS, with a pooled-analysis of two large cohorts from Italy and France. The association of baseline characteristics and DMTs with Covid-19 severity was assessed by multivariate ordinal-logistic models and pooled by a fixed-effect meta-analysis. 1066 patients with MS from Italy and 721 from France were included. In the multivariate model, anti-CD20 therapies were significantly associated (OR&nbsp;=&nbsp;2.05, 95%CI&nbsp;=&nbsp;1.39–3.02, p&nbsp;&lt;&nbsp;0.001) with Covid-19 severity, whereas interferon indicated a decreased risk (OR&nbsp;=&nbsp;0.42, 95%CI&nbsp;=&nbsp;0.18–0.99, p&nbsp;=&nbsp;0.047). This pooled-analysis confirms an increased risk of severe Covid-19 in patients on anti-CD20 therapies and supports the protective role of interferon

    Evolution of the avian β-defensin and cathelicidin genes

    Get PDF
    Background: β-defensins and cathelicidins are two families of cationic antimicrobial peptides (AMPs) with a broad range of antimicrobial activities that are key components of the innate immune system. Due to their important roles in host defense against rapidly evolving pathogens, the two gene families provide an ideal system for studying adaptive gene evolution. In this study we performed phylogenetic and selection analyses on β-defensins and cathelicidins from 53 avian species representing 32 orders to examine the evolutionary dynamics of these peptides in birds. Results and conclusions: Avian β-defensins are found in a gene cluster consisting of 13 subfamiles. Nine of these are conserved as one to one orthologs in all birds, while the others (AvBD1, AvBD3, AvBD7 and AvBD14) are more subject to gene duplication or pseudogenisation events in specific avian lineages. Avian cathelicidins are found in a gene cluster consisting of three subfamilies with species-specific duplications and gene loss. Evidence suggested that the propiece and mature peptide domains of avian cathelicidins are possibly co-evolving in such a way that the cationicity of the mature peptide is partially neutralised by the negative charge of the propiece prior to peptide secretion (further evidence obtained by repeating the analyses on primate cathelicidins). Negative selection (overall mean d

    Geographic and temporal trends in the molecular epidemiology and genetic mechanisms of transmitted HIV-1 drug resistance:an individual-patient- and sequence-level meta-analysis

    Get PDF
    Regional and subtype-specific mutational patterns of HIV-1 transmitted drug resistance (TDR) are essential for informing first-line antiretroviral (ARV) therapy guidelines and designing diagnostic assays for use in regions where standard genotypic resistance testing is not affordable. We sought to understand the molecular epidemiology of TDR and to identify the HIV-1 drug-resistance mutations responsible for TDR in different regions and virus subtypes.status: publishe

    3D structures of avian defensins

    No full text
    National audienceVertebrate defensins play a major role in both innate and adaptive immunity. They display wide range of microbicidal or microbistatic activities against Gram-negative and Gram positive bacteria, fungi and viruses. Three subclasses (a, 13. and 9) have been defined depending on the disulfide pairing involving the six conserved cysteines. We determined the three 3D-structures of avian defensins currently available: - We first resolved the solution structure of the king penguin AvBD103b defensin in 2004 (PDB code 1ut3). This first report on the 3D structure of avian defensin is structurally very close to mammal beta-defensins, but display different surface properties, certainly linked to a different mode of action at the level of the bacterial membranes. - We recently published the chicken AvBD2 solution structure (PDB code 2gl5) as well as its mutant AvBD2-K31A (substitution of a lysine residue for an alanine residue, PDB code 2gl6), which allows us to draw the first insights into structure activity relationships. - Finally, we determined the first 3D-structure of an ovo-defensin, gallin from chicken egg (PDB code 21gv), which unambiguously allows classifying it in 13-defensin's sub-family, even with some special structural features. Moreover, this first ovo-defensin structure can be used as a template to modelize other ovo-defensins from other birds. The overall folds of these three avian defensins include the typical twisted three-stranded antiparallel 13-sheet of 13-defensins, with the disulfide bridges pairing C1 -C5, C3-C6 and C2- C4. When the 3D-structures of king penguin AvBD1 03b, chicken AvBD2 and chicken egg gallin are compared, the three-stranded 13-sheet can be easily superimposed. However they differ in their N-terminal part. While AvBD1 03b has a high propensity to form an alpha-helix in aqueous solution, as it has been observed for related mammal 13defensins, gallin contains an additional parallel two-stranded beta-sheet, that had never been observed before for other defensins regardless their origin or subclasses. Chicken AvBD2 is shorter, lacking the N terminal residues and consequently has no possibility to form an additional N-terminal structural element
    corecore