415 research outputs found

    Experiential Role of Artefacts in Cooperative Design

    Get PDF
    The role of material artefacts in supporting distributed and co-located work practices has been well acknowledged within the HCI and CSCW research. In this paper, we show that in addition to their ecological, coordinative and organizational support, artefacts also play an ‘experiential’ role. In this case, artefacts not only improve efficiency or have a purely functional role (e.g. allowing people to complete tasks quickly), but the presence and manifestations of these artefacts bring quality and richness to people’s performance and help in making better sense of their everyday lives. In a domain like industrial design, such artefacts play an important role for supporting creativity and innovation. Based on our prolonged ethnographic fieldwork on understanding cooperative design practices of industrial design students and researchers, we describe several experiential practices that are supported by mundane artefacts like sketches, drawings, physical models and explorative prototypes – used and developed in designers’ everyday work. Our main intention to carry out this kind of research is to develop technologies to support designers’ everyday practices. We believe that with the emergence of ubiquitous computing, there is a growing need to focus on personal, emotional and social side of people’s everyday experiences. By focusing on the experiential practices of designers, we can provide a holistic view in the design of new interactive technologies

    Celestial mechanics in Kerr spacetime

    Get PDF
    The dynamical parameters conventionally used to specify the orbit of a test particle in Kerr spacetime are the energy EE, the axial component of the angular momentum, LzL_{z}, and Carter's constant QQ. These parameters are obtained by solving the Hamilton-Jacobi equation for the dynamical problem of geodesic motion. Employing the action-angle variable formalism, on the other hand, yields a different set of constants of motion, namely, the fundamental frequencies ωr\omega_{r}, ωθ\omega_{\theta} and ωϕ\omega_{\phi} associated with the radial, polar and azimuthal components of orbital motion. These frequencies, naturally, determine the time scales of orbital motion and, furthermore, the instantaneous gravitational wave spectrum in the adiabatic approximation. In this article, it is shown that the fundamental frequencies are geometric invariants and explicit formulas in terms of quadratures are derived. The numerical evaluation of these formulas in the case of a rapidly rotating black hole illustrates the behaviour of the fundamental frequencies as orbital parameters such as the semi-latus rectum pp, the eccentricity ee or the inclination parameter θ\theta_{-} are varied. The limiting cases of circular, equatorial and Keplerian motion are investigated as well and it is shown that known results are recovered from the general formulas.Comment: 25 pages (LaTeX), 5 figures, submitted to Class. Quantum Gra

    Behavioral Inhibition as a Risk Factor for the Development of Childhood Anxiety Disorders: A Longitudinal Study

    Get PDF
    This longitudinal study examined the additive and interactive effects of behavioral inhibition and a wide range of other vulnerability factors in the development of anxiety problems in youths. A sample of 261 children, aged 5 to 8 years, 124 behaviorally inhibited and 137 control children, were followed during a 3-year period. Assessments took place on three occasions to measure children’s level of behavioral inhibition, anxiety disorder symptoms, other psychopathological symptoms, and a number of other vulnerability factors such as insecure attachment, negative parenting styles, adverse life events, and parental anxiety. Results obtained with Structural Equation Modeling indicated that behavioral inhibition primarily acted as a specific risk factor for the development of social anxiety symptoms. Furthermore, the longitudinal model showed additive as well as interactive effects for various vulnerability factors on the development of anxiety symptoms. That is, main effects of anxious rearing and parental trait anxiety were found, whereas behavioral inhibition and attachment had an interactive effect on anxiety symptomatology. Moreover, behavioral inhibition itself was also influenced by some of the vulnerability factors. These results provide support for dynamic, multifactorial models for the etiology of child anxiety problems

    Preinfection in vitro chemotaxis, phagocytosis, oxidative burst, and expression of CD11/CD18 receptors and their predictive capacity on the outcome of mastitis induced in dairy cows with Escherichia coli.

    Get PDF
    Four to 6 wk after parturition, 12 cows in second, fourth, or fifth lactation were experimentally infected in one gland with Escherichia coli. The capacity of chemotaxis, phagocytosis, oxidative burst, and expression of CD11/CD18 receptors to predict the severity of IMI was measured. Bacterial counts in the infected quarter, expressed as area under the curve, and residual milk production in the uninfected quarters were compared to determine severity of the infection. Although these two outcome parameters were highly negatively correlated, regression models with preinfection tests for leukocyte function fitted best with bacterial counts as an outcome parameter. Of the preinfection tests for leukocyte function, chemotaxis best predicted the outcome of the IMI that had been experimentally induced by E. coli. The number of circulating peripheral leukocytes just prior to inoculation was used to predict 52 and 45% of the severity of IMI for bacterial counts and residual milk production, respectively. As a categorical variable, parity predicted 75 and 56% of the severity of IMI expressed as bacterial counts and residual milk production, respectively. Because of the strong effect of parity on the outcome of the experimentally induced mastitis, analysis was performed to discriminate between second parity cows and older cows. Significant differences were found for the number of circulating peripheral leukocytes and for the expression of CD11b/CDl8 and CD11c/CD18 receptors between younger and older cows

    Contributions to the Power Spectrum of Cosmic Microwave Background from Fluctuations Caused by Clusters of Galaxies

    Get PDF
    We estimate the contributions to the cosmic microwave background radiation (CMBR) power spectrum from the static and kinematic Sunyaev-Zel'dovich (SZ) effects, and from the moving cluster of galaxies (MCG) effect. We conclude, in agreement with other studies, that at sufficiently small scales secondary fluctuations caused by clusters provide important contributions to the CMBR. At 3000\ell \gtrsim 3000, these secondary fluctuations become important relative to lensed primordial fluctuations. Gravitational lensing at small angular scales has been proposed as a way to break the ``geometric degeneracy'' in determining fundamental cosmological parameters. We show that this method requires the separation of the static SZ effect, but the kinematic SZ effect and the MCG effect are less important. The power spectrum of secondary fluctuations caused by clusters of galaxies, if separated from the spectrum of lensed primordial fluctuations, might provide an independent constraint on several important cosmological parameters.Comment: LateX, 41 pages and 10 figures. Accepted for publication in the Astrophysical Journa

    The Abnormally Weighting Energy Hypothesis: the Missing Link between Dark Matter and Dark Energy

    Full text link
    We generalize tensor-scalar theories of gravitation by the introduction of an abnormally weighting type of energy. This theory of tensor-scalar anomalous gravity is based on a relaxation of the weak equivalence principle that is now restricted to ordinary visible matter only. As a consequence, the convergence mechanism toward general relativity is modified and produces naturally cosmic acceleration as an inescapable gravitational feedback induced by the mass-variation of some invisible sector. The cosmological implications of this new theoretical framework are studied. From the Hubble diagram cosmological test \textit{alone}, this theory provides an estimation of the amount of baryons and dark matter in the Universe that is consistent with the independent cosmological tests of Cosmic Microwave Background (CMB) and Big Bang Nucleosynthesis (BBN). Cosmic coincidence is naturally achieved from a equally natural assumption on the amplitude of the scalar coupling strength. Finally, from the adequacy to supernovae data, we derive a new intriguing relation between the space-time dependences of the gravitational coupling and the dark matter mass, providing an example of crucial constraint on microphysics from cosmology. This glimpses at an enticing new symmetry between the visible and invisible sectors, namely that the scalar charges of visible and invisible matter are exactly opposite.Comment: 24 pages, 6 figures, new version with extended discussions and added references. Accepted for publication in JCAP (sept. 2008

    Modelling Clock Synchronization in the Chess gMAC WSN Protocol

    Get PDF
    We present a detailled timed automata model of the clock synchronization algorithm that is currently being used in a wireless sensor network (WSN) that has been developed by the Dutch company Chess. Using the Uppaal model checker, we establish that in certain cases a static, fully synchronized network may eventually become unsynchronized if the current algorithm is used, even in a setting with infinitesimal clock drifts

    Genesis of Dark Energy: Dark Energy as Consequence of Release and Two-stage Tracking Cosmological Nuclear Energy

    Full text link
    Recent observations on Type-Ia supernovae and low density (Ωm=0.3\Omega_{m} = 0.3) measurement of matter including dark matter suggest that the present-day universe consists mainly of repulsive-gravity type `exotic matter' with negative-pressure often said `dark energy' (Ωx=0.7\Omega_{x} = 0.7). But the nature of dark energy is mysterious and its puzzling questions, such as why, how, where and when about the dark energy, are intriguing. In the present paper the authors attempt to answer these questions while making an effort to reveal the genesis of dark energy and suggest that `the cosmological nuclear binding energy liberated during primordial nucleo-synthesis remains trapped for a long time and then is released free which manifests itself as dark energy in the universe'. It is also explained why for dark energy the parameter w=2/3w = - {2/3}. Noting that w=1 w = 1 for stiff matter and w=1/3w = {1/3} for radiation; w=2/3w = - {2/3} is for dark energy because "1""-1" is due to `deficiency of stiff-nuclear-matter' and that this binding energy is ultimately released as `radiation' contributing "+1/3""+ {1/3}", making w=1+1/3=2/3w = -1 + {1/3} = - {2/3}. When dark energy is released free at Z=80Z = 80, w=2/3w = -{2/3}. But as on present day at Z=0Z = 0 when radiation strength has diminished to δ0\delta \to 0, w=1+δ1/3=1w = -1 + \delta{1/3} = - 1. This, thus almost solves the dark-energy mystery of negative pressure and repulsive-gravity. The proposed theory makes several estimates /predictions which agree reasonably well with the astrophysical constraints and observations. Though there are many candidate-theories, the proposed model of this paper presents an entirely new approach (cosmological nuclear energy) as a possible candidate for dark energy.Comment: 17 pages, 4 figures, minor correction

    Inflationary attractor in Gauss-Bonnet brane cosmology

    Full text link
    The inflationary attractor properties of the canonical scalar field and Born-Infeld field are investigated in the Randall-Sundrum II scenario with a Gauss-Bonnet term in the bulk action. We find that the inflationary attractor property will always hold for both the canonical and Born-Infeld fields for any allowed non-negative Gauss-Bonnet coupling. We also briefly discuss the possibility of explaining the suppressed lower multiples and running scalar spectral index simultaneously in the scenario of Gauss-Bonnet brane inflation.Comment: 7 pages, no figures. An error in the discussion of BI field corrected, conclusion correcte

    Using Scenarios to Validate Requirements through the use of Eye-Tracking in Prototyping

    Get PDF
    Research has shown that eliciting and capturing the correct behavior of systems reduces the number of defects that a system contains. A requirements engineer will model the functions of the system to gain a comprehensive understanding of the system in question. Engineers must verify the model for correctness by either having another engineer review it or build a prototype and validate with a stakeholder. However, research has shown that this form of verification can be ineffective because looking at an existing model can be suggestive and stump the development of new ideas. This paper provides an automated technique that can be used as an unbiased review of use case scenarios. Using the prototype and a scenario, a stakeholder can be guided through the use case scenario demonstrating where they expect to find the next step while their eye movements are tracked. Analysis of the eye tracking data can be used to identify missing requirements such as interaction steps that should have alternative sequences or determining problems with the flow of actions
    corecore