190 research outputs found

    Serum Neurofilament Light Association With Progression in Natalizumab-Treated Patients With Relapsing-Remitting Multiple Sclerosis

    Get PDF
    OBJECTIVE: The objective of this study was to investigate the potential of serum neurofilament light (NfL) to reflect or predict progression mostly independent of acute inflammatory disease activity in patients with relapsing remitting multiple sclerosis (RRMS) treated with natalizumab. METHODS: Patients were selected from a prospective observational cohort study initiated in 2006 at the VU University Medical Center Amsterdam, The Netherlands, including patients with RRMS treated with natalizumab. Selection criteria included an age of 18 years or older and a minimum follow-up of 3 years from natalizumab initiation. Clinical and MRI assessments were performedon a yearly basis, and serum NfL was measured at 5 time-points during the follow-up, including on the day of natalizumab initiation (baseline), 3 months, 1 year and 2 years after natalizumab initiation, and on last follow-up visit. Using general linear regression models, we compared the longitudinal dynamics of NfL between patients with and without confirmed EDSS progression between year 1 visit and last follow-up, and between individuals with and without EDSS+ progression, a composite endpoint including the EDSS, 9 hole peg test and timed 25 foot-walk. RESULTS: Eighty-nine natalizumab-treated patients with RRMS were included. Median follow-up time was 5.2 years (IQR 4.3-6.7, range 3.0-11.0) after natalizumab initiation, mean age at time of natalizumab initiation was 36.9 (SD: 8.5), and median disease duration was 7.4 years (IQR 3.8-12.1). Between year 1 and the last follow-up, 28/89 (31.5%) individuals showed confirmed EDSS progression. Data for the EDSS+ endpoint was available for 73 out of the 89 patients and 35/73 (47.9%) showed confirmed EDSS+ progression.We observed a significant reduction in NfL levels 3 months after natalizumab initiation, which reached its nadir of close to 50% of baseline levels 1 year after treatment initiation. We found no difference in the longitudinal dynamics of NfL in progressors versus non-progressors. NfL levels at baseline and 1 year after natalizumab initiation did not predict progression at last follow-up. DISCUSSION: In our cohort of natalizumab-treated patients with RRMS, NfL fails to capture or predict progression that occurs largely independently of clinical or radiological signs of acute focal inflammatory disease activity. Additional biomarkers may thus be needed to monitor progression in these patients. CLASSIFICATION OF EVIDENCE: This study provides Class II evidence that serum NfL levels are not associated with disease progression in natalizumab-treated patients with RRMS

    Plasma proteome profiling identifies changes associated to AD but not to FTD

    Get PDF
    Background Frontotemporal dementia (FTD) is caused by frontotemporal lobar degeneration (FTLD), characterized mainly by inclusions of Tau (FTLD-Tau) or TAR DNA binding43 (FTLD-TDP) proteins. Plasma biomarkers are strongly needed for specific diagnosis and potential treatment monitoring of FTD. We aimed to identify specific FTD plasma biomarker profiles discriminating FTD from AD and controls, and between FTD pathological subtypes. In addition, we compared plasma results with results in post-mortem frontal cortex of FTD cases to understand the underlying process. Methods Plasma proteins (n = 1303) from pathologically and/or genetically confirmed FTD patients (n = 56; FTLD-Tau n = 16; age = 58.2 +/- 6.2; 44% female, FTLD-TDP n = 40; age = 59.8 +/- 7.9; 45% female), AD patients (n = 57; age = 65.5 +/- 8.0; 39% female), and non-demented controls (n = 148; 61.3 +/- 7.9; 41% female) were measured using an aptamer-based proteomic technology (SomaScan). In addition, exploratory analysis in post-mortem frontal brain cortex of FTD (n = 10; FTLD-Tau n = 5; age = 56.2 +/- 6.9, 60% female, and FTLD-TDP n = 5; age = 64.0 +/- 7.7, 60% female) and non-demented controls (n = 4; age = 61.3 +/- 8.1; 75% female) were also performed. Differentially regulated plasma and tissue proteins were identified by global testing adjusting for demographic variables and multiple testing. Logistic lasso regression was used to identify plasma protein panels discriminating FTD from non-demented controls and AD, or FTLD-Tau from FTLD-TDP. Performance of the discriminatory plasma protein panels was based on predictions obtained from bootstrapping with 1000 resampled analysis. Results Overall plasma protein expression profiles differed between FTD, AD and controls (6 proteins; p = 0.005), but none of the plasma proteins was specifically associated to FTD. The overall tissue protein expression profile differed between FTD and controls (7-proteins; p = 0.003). There was no difference in overall plasma or tissue expression profile between FTD subtypes. Regression analysis revealed a panel of 12-plasma proteins discriminating FTD from AD with high accuracy (AUC: 0.99). No plasma protein panels discriminating FTD from controls or FTD pathological subtypes were identified. Conclusions We identified a promising plasma protein panel as a minimally-invasive tool to aid in the differential diagnosis of FTD from AD, which was primarily associated to AD pathophysiology. The lack of plasma profiles specifically associated to FTD or its pathological subtypes might be explained by FTD heterogeneity, calling for FTD studies using large and well-characterize cohorts

    Kappa free light chains is a valid tool in the diagnostics of MS: A large multicenter study

    Get PDF
    Objective: To validate kappa free light chain (KFLC) and lambda free light chain (LFLC) indices as a diagnostic biomarker in multiple sclerosis (MS). Methods: We performed a multicenter study including 745 patients from 18 centers (219 controls and 526 clinically isolated syndrome (CIS)/MS patients) with a known oligoclonal IgG band (OCB) status. KFLC and LFLC were measured in paired cerebrospinal fluid (CSF) and serum samples. Gaussian mix- ture modeling was used to define a cut-off for KFLC and LFLC indexes. Results: The cut-off for the KFLC index was 6.6 (95% confidence interval (CI) = 5.2-138.1). The cut-off for the LFLC index was 6.9 (95% CI=4.5-22.2). For CIS/MS patients, sensitivity of the KFLC index (0.88; 95% CI = 0.85-0.90) was higher than OCB (0.82; 95%CI = 0.79-0.85; p < 0.001), but specificity (0.83; 95% CI = 0.78-0.88) was lower (OCB = 0.92; 95% CI = 0.89-0.96; p < 0.001). Both sensitivity and specificity for the LFLC index were lower than OCB. Conclusion: Compared with OCB, the KFLC index is more sensitive but less specific for diagnosing CIS/MS. Lacking an elevated KFLC index is more powerful for excluding MS compared with OCB but the latter is more important for ruling in a diagnosis of CIS/MS

    No Plasmatic Proteomic Signature at Clinical Disease Onset Associated With 11 Year Clinical, Cognitive and MRI Outcomes in Relapsing-Remitting Multiple Sclerosis Patients

    Get PDF
    Background: The clinical course of relapsing-remitting multiple sclerosis (RRMS) is highly heterogeneous and prognostic biomarkers at time of diagnosis are lacking.Objective: We investigated the predictive value of the plasma proteome at time of diagnosis in RRMS patients.Methods: The plasma proteome was interrogated using a novel aptamer-based proteomics platform, which allows to measure the levels of a predefined set of 1310 proteins.Results: In 67 clinically and radiologically well characterized RRMS patients, we found no association between the plasma proteome at diagnosis and clinical, cognitive or MRI outcomes after 11 years.Conclusions: Proteomics studies on cerebrospinal fluid may be better suited to identify prognostic biomarkers in early RRMS

    Association of Spinal Cord Atrophy and Brain Paramagnetic Rim Lesions With Progression Independent of Relapse Activity in People With MS.

    Get PDF
    Progression independent of relapse activity (PIRA) is a crucial determinant of overall disability accumulation in multiple sclerosis (MS). Accelerated brain atrophy has been shown in patients experiencing PIRA. In this study, we assessed the relation between PIRA and neurodegenerative processes reflected by (1) longitudinal spinal cord atrophy and (2) brain paramagnetic rim lesions (PRLs). Besides, the same relationship was investigated in progressive MS (PMS). Last, we explored the value of cross-sectional brain and spinal cord volumetric measurements in predicting PIRA. From an ongoing multicentric cohort study, we selected patients with MS with (1) availability of a susceptibility-based MRI scan and (2) regular clinical and conventional MRI follow-up in the 4 years before the susceptibility-based MRI. Comparisons in spinal cord atrophy rates (explored with linear mixed-effect models) and PRL count (explored with negative binomial regression models) were performed between: (1) relapsing-remitting (RRMS) and PMS phenotypes and (2) patients experiencing PIRA and patients without confirmed disability accumulation (CDA) during follow-up (both considering the entire cohort and the subgroup of patients with RRMS). Associations between baseline MRI volumetric measurements and time to PIRA were explored with multivariable Cox regression analyses. In total, 445 patients with MS (64.9% female; mean [SD] age at baseline 45.0 [11.4] years; 11.2% with PMS) were enrolled. Compared with patients with RRMS, those with PMS had accelerated cervical cord atrophy (mean difference in annual percentage volume change [MD-APC] -1.41; p = 0.004) and higher PRL load (incidence rate ratio [IRR] 1.93; p = 0.005). Increased spinal cord atrophy (MD-APC -1.39; p = 0.0008) and PRL burden (IRR 1.95; p = 0.0008) were measured in patients with PIRA compared with patients without CDA; such differences were also confirmed when restricting the analysis to patients with RRMS. Baseline volumetric measurements of the cervical cord, whole brain, and cerebral cortex significantly predicted time to PIRA (all p ≤ 0.002). Our results show that PIRA is associated with both increased spinal cord atrophy and PRL burden, and this association is evident also in patients with RRMS. These findings further point to the need to develop targeted treatment strategies for PIRA to prevent irreversible neuroaxonal loss and optimize long-term outcomes of patients with MS

    Clusters of co-abundant proteins in the brain cortex associated with fronto-temporal lobar degeneration

    Get PDF
    Background: \nFrontotemporal lobar degeneration (FTLD) is characterized pathologically by neuronal and glial inclusions of hyperphosphorylated tau or by neuronal cytoplasmic inclusions of TDP43. This study aimed at deciphering the molecular mechanisms leading to these distinct pathological subtypes. \n \nMethods: \nTo this end, we performed an unbiased mass spectrometry-based proteomic and systems-level analysis of the middle frontal gyrus cortices of FTLD-tau (n = 6), FTLD-TDP (n = 15), and control patients (n = 5). We validated these results in an independent patient cohort (total n = 24). \n \nResults: \nThe middle frontal gyrus cortex proteome was most significantly altered in FTLD-tau compared to controls (294 differentially expressed proteins at FDR = 0.05). The proteomic modifications in FTLD-TDP were more heterogeneous (49 differentially expressed proteins at FDR = 0.1). Weighted co-expression network analysis revealed 17 modules of co-regulated proteins, 13 of which were dysregulated in FTLD-tau. These modules included proteins associated with oxidative phosphorylation, scavenger mechanisms, chromatin regulation, and clathrin-mediated transport in both the frontal and temporal cortex of FTLD-tau. The most strongly dysregulated subnetworks identified cyclin-dependent kinase 5 (CDK5) and polypyrimidine tract-binding protein 1 (PTBP1) as key players in the disease process. Dysregulation of 9 of these modules was confirmed in independent validation data sets of FLTD-tau and control temporal and frontal cortex (total n = 24). Dysregulated modules were primarily associated with changes in astrocyte and endothelial cell protein abundance levels, indicating pathological changes in FTD are not limited to neurons. \n \nConclusions: \nUsing this innovative workflow and zooming in on the most strongly dysregulated proteins of the identified modules, we were able to identify disease-associated mechanisms in FTLD-tau with high potential as biomarkers and/or therapeutic targets

    Kappa free light chains is a valid tool in the diagnostics of MS : A large multicenter study

    Get PDF
    To validate kappa free light chain (KFLC) and lambda free light chain (LFLC) indices as a diagnostic biomarker in multiple sclerosis (MS). We performed a multicenter study including 745 patients from 18 centers (219 controls and 526 clinically isolated syndrome (CIS)/MS patients) with a known oligoclonal IgG band (OCB) status. KFLC and LFLC were measured in paired cerebrospinal fluid (CSF) and serum samples. Gaussian mixture modeling was used to define a cut-off for KFLC and LFLC indexes. The cut-off for the KFLC index was 6.6 (95% confidence interval (CI) = 5.2-138.1). The cut-off for the LFLC index was 6.9 (95% CI = 4.5-22.2). For CIS/MS patients, sensitivity of the KFLC index (0.88; 95% CI = 0.85-0.90) was higher than OCB (0.82; 95%CI = 0.79-0.85; p < 0.001), but specificity (0.83; 95% CI = 0.78-0.88) was lower (OCB = 0.92; 95% CI = 0.89-0.96; p < 0.001). Both sensitivity and specificity for the LFLC index were lower than OCB. Compared with OCB, the KFLC index is more sensitive but less specific for diagnosing CIS/MS. Lacking an elevated KFLC index is more powerful for excluding MS compared with OCB but the latter is more important for ruling in a diagnosis of CIS/MS

    Using Cognitive Pre-Testing Methods in the Development of a New Evidenced-Based Pressure Ulcer Risk Assessment Instrument

    Get PDF
    Background: Variation in development methods of Pressure Ulcer Risk Assessment Instruments has led to inconsistent inclusion of risk factors and concerns about content validity. A new evidenced-based Risk Assessment Instrument, the Pressure Ulcer Risk Primary Or Secondary Evaluation Tool - PURPOSE-T was developed as part of a National Institute for Health Research (NIHR) funded Pressure Ulcer Research Programme (PURPOSE: RP-PG-0407-10056). This paper reports the pre-test phase to assess and improve PURPOSE-T acceptability, usability and confirm content validity. Methods: A descriptive study incorporating cognitive pre-testing methods and integration of service user views was undertaken over 3 cycles comprising PURPOSE-T training, a focus group and one-to-one think-aloud interviews. Clinical nurses from 2 acute and 2 community NHS Trusts, were grouped according to job role. Focus group participants used 3 vignettes to complete PURPOSE-T assessments and then participated in the focus group. Think-aloud participants were interviewed during their completion of PURPOSE-T. After each pre-test cycle analysis was undertaken and adjustment/improvements made to PURPOSE-T in an iterative process. This incorporated the use of descriptive statistics for data completeness and decision rule compliance and directed content analysis for interview and focus group data. Data were collected April 2012-June 2012. Results: Thirty-four nurses participated in 3 pre-test cycles. Data from 3 focus groups, 12 think-aloud interviews incorporating 101 PURPOSE-T assessments led to changes to improve instrument content and design, flow and format, decision support and item-specific wording. Acceptability and usability were demonstrated by improved data completion and appropriate risk pathway allocation. The pre-test also confirmed content validity with clinical nurses. Conclusions: The pre-test was an important step in the development of the preliminary PURPOSE-T and the methods used may have wider instrument development application. PURPOSE-T proposes a new approach to pressure ulcer risk assessment, incorporating a screening stage, the inclusion of skin status to distinguish between those who require primary prevention and those who require secondary prevention/treatment and the use of colour to support pathway allocation and decision making. Further clinical evaluation is planned to assess the reliability and validity of PURPOSE-T and it’s impact on care processes and patient outcomes

    Patients' functioning as predictor of nursing workload in acute hospital units providing rehabilitation care: a multi-centre cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Management decisions regarding quality and quantity of nurse staffing have important consequences for hospital budgets. Furthermore, these management decisions must address the nursing care requirements of the particular patients within an organizational unit. In order to determine optimal nurse staffing needs, the extent of nursing workload must first be known. Nursing workload is largely a function of the composite of the patients' individual health status, particularly with respect to functioning status, individual need for nursing care, and severity of symptoms. The International Classification of Functioning, Disability and Health (ICF) and the derived subsets, the so-called ICF Core Sets, are a standardized approach to describe patients' functioning status. The objectives of this study were to (1) examine the association between patients' functioning, as encoded by categories of the Acute ICF Core Sets, and nursing workload in patients in the acute care situation, (2) compare the variance in nursing workload explained by the ICF Core Set categories and with the Barthel Index, and (3) validate the Acute ICF Core Sets by their ability to predict nursing workload.</p> <p>Methods</p> <p>Patients' functioning at admission was assessed using the respective Acute ICF Core Set and the Barthel Index, whereas nursing workload data was collected using an established instrument. Associations between dependent and independent variables were modelled using linear regression. Variable selection was carried out using penalized regression.</p> <p>Results</p> <p>In patients with neurological and cardiopulmonary conditions, selected ICF categories and the Barthel Index Score explained the same variance in nursing workload (44% in neurological conditions, 35% in cardiopulmonary conditions), whereas ICF was slightly superior to Barthel Index Score for musculoskeletal conditions (20% versus 16%).</p> <p>Conclusions</p> <p>A substantial fraction of the variance in nursing workload in patients with rehabilitation needs in the acute hospital could be predicted by selected categories of the Acute ICF Core Sets, or by the Barthel Index score. Incorporating ICF Core Set-based data in nursing management decisions, particularly staffing decisions, may be beneficial.</p

    Aerosols Transmit Prions to Immunocompetent and Immunodeficient Mice

    Get PDF
    Prions, the agents causing transmissible spongiform encephalopathies, colonize the brain of hosts after oral, parenteral, intralingual, or even transdermal uptake. However, prions are not generally considered to be airborne. Here we report that inbred and crossbred wild-type mice, as well as tga20 transgenic mice overexpressing PrPC, efficiently develop scrapie upon exposure to aerosolized prions. NSE-PrP transgenic mice, which express PrPC selectively in neurons, were also susceptible to airborne prions. Aerogenic infection occurred also in mice lacking B- and T-lymphocytes, NK-cells, follicular dendritic cells or complement components. Brains of diseased mice contained PrPSc and transmitted scrapie when inoculated into further mice. We conclude that aerogenic exposure to prions is very efficacious and can lead to direct invasion of neural pathways without an obligatory replicative phase in lymphoid organs. This previously unappreciated risk for airborne prion transmission may warrant re-thinking on prion biosafety guidelines in research and diagnostic laboratories
    corecore