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Plasma proteome profiling identifies 
changes associated to AD but not to FTD
R. Babapour Mofrad1,2†, M. del Campo1,3,4†, C. F. W. Peeters5,6, L. H. H. Meeter7, H. Seelaar8, M. Koel‑Simmelink1, 
I. H. G. B. Ramakers9, H. A. M. Middelkoop10,11, P. P. De Deyn12,13, J. A. H. R. Claassen14, J. C. van Swieten7, 
C. Bridel1, J. J. M. Hoozemans15, P. Scheltens2, W. M. van der Flier2,5, Y. A. L. Pijnenburg2 and 
Charlotte E. Teunissen1*   

Abstract 

Background: Frontotemporal dementia (FTD) is caused by frontotemporal lobar degeneration (FTLD), characterized 
mainly by inclusions of Tau (FTLD‑Tau) or TAR DNA binding43 (FTLD‑TDP) proteins. Plasma biomarkers are strongly 
needed for specific diagnosis and potential treatment monitoring of FTD. We aimed to identify specific FTD plasma 
biomarker profiles discriminating FTD from AD and controls, and between FTD pathological subtypes. In addition, 
we compared plasma results with results in post‑mortem frontal cortex of FTD cases to understand the underlying 
process.

Methods: Plasma proteins (n = 1303) from pathologically and/or genetically confirmed FTD patients (n = 56; 
FTLD‑Tau n = 16; age = 58.2 ± 6.2; 44% female, FTLD‑TDP n = 40; age = 59.8 ± 7.9; 45% female), AD patients (n = 57; 
age = 65.5 ± 8.0; 39% female), and non‑demented controls (n = 148; 61.3 ± 7.9; 41% female) were measured using 
an aptamer‑based proteomic technology (SomaScan). In addition, exploratory analysis in post‑mortem frontal brain 
cortex of FTD (n = 10; FTLD‑Tau n = 5; age = 56.2 ± 6.9, 60% female, and FTLD‑TDP n = 5; age = 64.0 ± 7.7, 60% female) 
and non‑demented controls (n = 4; age = 61.3 ± 8.1; 75% female) were also performed. Differentially regulated plasma 
and tissue proteins were identified by global testing adjusting for demographic variables and multiple testing. Logis‑
tic lasso regression was used to identify plasma protein panels discriminating FTD from non‑demented controls and 
AD, or FTLD‑Tau from FTLD‑TDP. Performance of the discriminatory plasma protein panels was based on predictions 
obtained from bootstrapping with 1000 resampled analysis.

Results: Overall plasma protein expression profiles differed between FTD, AD and controls (6 proteins; p = 0.005), 
but none of the plasma proteins was specifically associated to FTD. The overall tissue protein expression profile dif‑
fered between FTD and controls (7‑proteins; p = 0.003). There was no difference in overall plasma or tissue expression 
profile between FTD subtypes. Regression analysis revealed a panel of 12‑plasma proteins discriminating FTD from 
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Background
Frontotemporal Dementia (FTD) is one of the most 
prevalent forms of young onset dementia (< 65  years) 
[1]. The underlying pathological process is Frontotem-
poral Lobar Degeneration (FTLD), which can be mainly 
classified into two different pathological subtypes based 
on the typical protein aggregates present in brain tis-
sue: the microtubule associated protein Tau (FTLD-
Tau) or TAR DNA-binding protein 43 (FTLD-TDP) [2, 
3]. Each pathological subtype will likely require distinct 
targeted drugs, and therefore, it is necessary to discrim-
inate both subtypes in living patients. The poor correla-
tion between the clinical presentation and underlying 
pathology [4] makes it hard to discriminate these path-
ological subtypes in sporadic FTD. However, in familial 
FTD cases (i.e. approximately 10–25% of cases [5]), the 
underlying genetic mutation is directly linked to these 
specific Tau or TDP pathologies. Genetic mutations in 
the microtubule-associated protein tau (MAPT) lead to 
FTLD-Tau pathology; while mutations in the progran-
ulin (GRN), or chromosome 9 open reading frame 72 
(C9ORF72) genes, lead to FTLD-TDP pathology [6].

Currently, there is no biomarker for the diagnosis and 
potential treatment response monitoring of FTD and 
its pathological subtypes. In addition, it is of particular 
importance to differentiate FTD from other dementia 
disorders, such as Alzheimer’s Disease (AD), or non-
dementia disorders such as primary psychiatric dis-
orders (PPD). Both PPD and AD can sometimes show 
similar clinical features as FTD, including language and 
executive function impairments [7, 8] or behavioral 
changes [3, 4]. Previous studies have shown promising 
cerebrospinal fluid (CSF) or blood biomarker altera-
tions in FTD compared to controls, in particular neu-
rofilament light (NfL) levels or the CSF p/tTau ratio 
for the discrimination of FTD pathological subtypes 
[9–12]. However, changes in these markers were either 
not specific for FTD as they were also changed in other 
types of dementia [9, 10], or did not reach sufficiently 
high diagnostic accuracy [11, 12]. This warrants the 
identification of novel biomarker candidates for diag-
nosis and treatment monitoring of FTD and its patho-
logical subtypes.

Most FTD biomarker studies performed to date have 
used CSF as the main source for biomarker discovery, 
due to its close proximity to the brain [9]. However, as a 
lumbar puncture is often perceived as invasive, biomark-
ers in a more easily accessible body fluid such as blood is 
essential. The high-throughput multiplex aptamer-based 
proteomic technology (SomaScan) [13–15], able to meas-
ure > 1000 proteins in a small volume of plasma, allows 
for the discovery of novel blood-based biomarkers, and 
has been used to identify novel candidate biomarkers 
for AD pathology [16–18]. The multiplex feature of the 
aptamer-based proteomics technology is of importance 
as it is expected that a specific combination of proteins 
rather than a single biomarker will probably provide a 
more accurate profile of each specific dementia type, due 
to the complexity and heterogeneity of dementia patholo-
gies [10].

In this study, we aimed to identify novel plasma pro-
tein profiles for the specific discrimination of FTD from 
AD and controls, as well as FTLD pathological subtypes 
using this innovative aptamer-based proteomic approach. 
To understand the possible relation of the different mark-
ers with the central nervous system, the plasma pro-
teome differences were compared to those observed in 
post-mortem frontal cortex of FTD cases and controls.

Methods
Samples
Blood plasma
Human plasma samples from FTD subjects (n = 56) were 
obtained from two specialized memory centers in the 
Netherlands: Alzheimer Center Amsterdam (n = 96), and 
Erasmus Medical Center Rotterdam (n = 51) [19–21]. All 
56 FTD subjects had a definite diagnosis of FTD based 
on known FTD-causing mutations (i.e. GRN, MAPT 
or C9orf72) and/or autopsy-confirmation. Underly-
ing FTLD-TDP pathology was present in 40 subjects 
(18 autopsy confirmed cases, 13 GRN [of whom 1 was 
autopsy confirmed], 9 C9orf72 [of whom 1 was autopsy 
confirmed]), and FTLD-Tau pathology in 16 subjects (3 
autopsy-confirmed cases, 13 MAPT [of whom 2 were 
also autopsy confirmed]). AD plasma samples (n = 57) 
were selected from the Parelsnoer Initiative biobank, the 

AD with high accuracy (AUC: 0.99). No plasma protein panels discriminating FTD from controls or FTD pathological 
subtypes were identified.

Conclusions: We identified a promising plasma protein panel as a minimally‑invasive tool to aid in the differential 
diagnosis of FTD from AD, which was primarily associated to AD pathophysiology. The lack of plasma profiles specifi‑
cally associated to FTD or its pathological subtypes might be explained by FTD heterogeneity, calling for FTD studies 
using large and well‑characterize cohorts.

Keywords: Plasma biomarkers, Frontotemporal dementia, FTD, Alzheimer’s disease, AD, Somascan
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neurodegeneration Parel, which collected samples from 
the eight Academic medical centers in the Netherlands, 
including Alzheimer Center Amsterdam and Erasmus 
Medical Center Rotterdam. AD subjects were selected 
based on clinical diagnosis using NINCDS-ADRDA 
criteria [22, 23], with either CSF biomarker results con-
cordant with AD or MTA score ≥ 2 in subjects aged < 75, 
and MTA score ≥ 3 in subjects aged > 75. Control plasma 
samples were (n = 148) were obtained from Alzheimer 
Center Amsterdam (n = 69), Erasmus Medical Center 
Rotterdam (n = 22), and the Parelsnoer Initiative biobank 
(n = 57). Controls were individuals with subjective cogni-
tive decline (SCD), in whom objective cognitive and labo-
ratory investigations were normal (i.e., criteria for MCI, 
dementia, or any other neurological or psychiatric dis-
order not fulfilled [22]. They were selected based on the 
performance of cognitive tests (mini mental score exami-
nation; MMSE > 26), normal CSF biomarkers (available 
for all the Amsterdam and Rotterdam samples, and for 
26% of the Parelsnoer samples) and if no CSF biomarker 
data were available, stable disease course over 1  year of 
follow-up. AD and control cases were not autopsy con-
firmed. Demographic information. Distribution of the 
samples per center is presented in Additional file  1: 
Table S1.

Of note, patients and samples within the Parelsnoer 
initiative followed standardized clinical and biobank-
ing protocols at time of diagnostic work-up [22], thereby 
minimizing potential center and biobanking effects. All 
samples were collected through venipuncture using Eth-
ylenediaminetetraacetic acid (EDTA) collection tubes. 
Blood collection was followed by centrifugation at 1800g. 
Plasma supernatant was collected, aliquoted and stored 
in 0.5  ml polypropylene tubes at − 80  °C within 4  h in 
each local biobank. Latest guidelines for blood sample 
handling for amyloid biomarker analysis recommend 
processing of centrifuging samples within 3 h if samples 
are kept at room temperature, which is in line with the 
targeted conditions in this study [24].

Post‑mortem brain tissue
Post-mortem brain material was obtained from the 
Netherlands Brain Bank (Amsterdam, the Netherlands). 
We selected snap frozen medial frontal gyrus from FTD 
cases (FTLD-Tau n = 5; FTLD-TDP n = 5) and non-
demented controls (n = 4). Four FTLD-TDP cases were 
familial (GRN n = 2, C9orf72 n = 2) and one was a spo-
radic case. Of the FTLD-Tau cases, all were familial and 
had an underlying MAPT mutation. Neuropathologi-
cal evaluation and processing were performed as previ-
ously described [25]. The distribution and the density 
of tau aggregates and TDP-43 inclusions were evalu-
ated according to the criteria described by Lee, Cairns 

and MacKenzie [26–28]. Post-mortem frontal cortex 
was homogenized using Tissue Protein Extraction Rea-
gent (T-Per, 0.1 g/ml, Thermo Scientific, Waltham, USA) 
containing EDTA-free Protease Inhibitor Cocktail (1:25, 
Roche, Basel, Germany), and left for 15  min at 4  °C. 
Homogenates were subsequently centrifuged at 10,000g 
for 15 min at 4  °C. Protein concentration was measured 
using Bio-Rad Protein Assay (Bio-Rad, Hercules, USA) 
and bovine serum albumin (BSA) (Thermo Scientific, 
Waltham, USA) following manufacturer’s recommen-
dations. Samples were stored at − 80  °C until further 
analysis.

Protein measures
Protein concentrations of 1303 human proteins in plasma 
of AD and FTD patients or controls, and brain tissue 
homogenates of FTD patients and controls were meas-
ured at the Neurochemistry Laboratory of Amsterdam 
UMC using SomaScan (SomaLogic, Inc. Boulder, Colo-
rado, USA). Samples were diluted into three concentra-
tions (i.e. 40%, 1%, and 0.005%) to enable the appropriate 
measurement range for all Somamers within one sample. 
The least concentrated sample is designed to detect the 
most abundant proteins, and the most concentrated sam-
ple is designed to detect the least abundant proteins. The 
precise SomaScan principle has been described in detail 
previously [13, 16]. Samples were randomly divided over 
the plates to ensure an even mix of diagnostic groups. 
Plasma samples were measured in 5 (AD vs. CN) and 
7 (FTD vs. CN) runs, and tissue samples in 1 (FTD vs. 
CN) run. Technicians trained and certified by Soma-
Logic conducted all analyses in a blinded manner. Both 
plasma datasets (i.e. FTD vs. CN and AD vs. CN) were 
run in two batches using different SOMAmer reagent 
master mixes and were standardized to a common refer-
ence using common calibrator control lots. In addition, 
all SomaScan data were normalized following a standard 
three step procedure [(1) hybridization normalization, (2) 
plate scaling, (3) median signal normalization] to remove 
systematic biases in the raw assay data. No specific center 
effects on the overall protein expression profile were 
detected after principal component analysis (Additional 
file 2: Fig. S1).

Statistical analysis
All statistical analyses were performed using R version 
3.5.2. Demographics were compared between groups 
using analysis of variance (ANOVA) and Kruskal–Wal-
lis tests where appropriate. First, we used the global test 
[29], which tests if the overall protein abundance pro-
file is notably different between diagnoses. This test is 
suitable when there may be insufficient power to detect 
individual proteomic markers. We applied global testing 
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corrected for age and sex to identify an overall difference 
in plasma and post-mortem protein expression profile 
between (1) FTD, AD and controls, and (2) FTD patho-
logical subtypes (FTLD-Tau vs. FTLD-TDP). We also 
applied the global test in tissue to measure overall dif-
ferences in protein expression profiles between FTD and 
controls. Multiplicity correction using the false discovery 
rate (FDR) was applied within each global test to the sig-
nificant subtree that identifies those of the initial 1303 
features to which the test result is attributable. FDR val-
ues < 0.05 were considered significant. Next, logistic lasso 
regression (LLR) with correction for age and sex was per-
formed to select a panel of proteins that could discrimi-
nate between FTD versus controls, FTD versus AD and 
FTLD-Tau versus FTLD-TDP. Predictive performance 
was assessed by receiver operating characteristic (ROC) 
curves and the area under the ROC curves (AUCs). ROC 
curves and AUCs were produced by bootstrapping with 
1000 resampling. 95% confidence interval around the 
resulting AUCs was calculated based on the resampling 
quantiles (percentile method).

Results
Demographics
FTD patients and controls included in the plasma anal-
yses were both younger than AD patients, and both 
dementia groups had lower MMSE scores than controls 

(p < 0.05, Table  1). FTLD-Tau and FTLD-TDP subtypes 
did not differ in age, sex or MMSE scores. In patients 
selected for the tissue analysis, no differences were 
observed in age and sex.

Plasma protein profile differs between FTD, AD 
and controls.
The overall plasma protein expression profile consist-
ing of 1303 proteins was different between FTD, AD 
patients and controls (p = 0.005). We identified six pro-
teins that attributed to this difference in expression pro-
file (FN1.3, Fibronectin, FN1.4, VWF, ECM1 and ApoE; 
Table 2, Additional file 2: Fig. S2), which were all upregu-
lated in AD compared to both FTD patients and controls 
(Table  2). Proteins specifically associated to FTD were 
not detected. There was no difference in overall plasma 
protein profiles between FTD-Tau and FTLD-TDP sub-
types (p > 0.05).

Plasma protein profiles can discriminate FTD from AD, 
but not between pathological subtypes
Next, we set out to identify panels of plasma proteins to 
discriminate between FTD versus Controls, FTD versus 
AD and FTD-Tau versus FTLD-TDP. No plasma prot-
eomic signal that reliable discriminated FTD from con-
trols or FTD pathological subtypes was detected (Fig. 1, 
AUC:0.61; 95% CI 0.48–0.73). We however identified a 

Table 1 Demographics

Analysis of variance (ANOVA) or Kruskal–Wallis test were used as appropriate. p < 0.05 was considered significant

AD Alzheimer’s disease, TDP TAR DNA binding protein 43, FTD frontotemporal lobar degeneration, MMSE mini mental state examination, NA not available
a Age at inclusion in plasma samples and age at death in post-mortem tissue
b FTD patients and AD had significantly lower MMSE scores
c FTD patients and controls were significantly younger than AD patients
d FTLD-TDP pathology was present in 40 subjects (18 autopsy confirmed cases, 13 GRN [of whom 1 was autopsy confirmed], 9 C9orf72 [of whom 1 was autopsy 
confirmed]), and FTLD-Tau pathology in 16 subjects (3 autopsy-confirmed cases, 13 MAPT [of whom 2 were also autopsy confirmed])
e FTLD-TDP was present in 5 subjects (4 cases were familial [GRN n = 2 and C9orf72 n = 2] and 1 was a sporadic case), and FTLD-Tau was present in 5 cases (all 5 cases 
were familial [MAPT n = 5])

n (%) Age, years mean 
(SD)a

Sex, female, n (%) MMSE, mean (SD) Post-mortem delay 
mean (SD) in hours

Plasma

FTD 56 (22%) 59.4 (7.4) 25 (45%) 24 (5.2)

FTLD‑TDPd 40 (71%) 59.8 (7.9) 18 (45%) 24 (5.7)

FTLD‑Taue 16 (29%) 58.2 (6.2) 7 (44%) 25 (3.6)

AD 57 (22%) 65.5 (8.0)c 22 (39%) 23 (2.3)

Controls 148 (57%) 61.3 (7.9) 60 (41%) 29 (1.4) b

Post-mortem frontal 
cortex

FTD 10 (67%) 60.1 (8.0) 6 (60%) NA 6.5 (3.7)

FTLD‑TDP 5 (50%) 64.0 (7.7) 3 (60%) NA 6.8 (3.1)

FTLD‑Tau 5 (50%) 56.2 (6.9) 3 (60%) NA 5.3 (0.6)

Controls 4 (33%) 61.3 (8.1) 3 (75%) NA 8.8 (2.5)
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panel of 12 plasma proteins that discriminated FTD from 
AD with very high accuracy (AUC: 0.99, 95% CI 0.96–1) 
(Fig. 1; Table 3).

Tissue proteins levels differ between FTD subjects 
and controls, but not between pathological subtypes
Next, we exploratory analyzed post-mortem brain tis-
sue of FTD cases versus controls, and FTD subtypes. 
The overall tissue protein expression profile was differ-
ent between FTD and controls (p = 0.003). We identi-
fied seven proteins that attributed to this difference 
in expression profile, of which four were upregulated 
(C4, Discoidin domain receptor 1, Annexin I, Alpha-
1-antichymotrypsin complex, Table  4) and three were 

downregulated in FTD (WIF 1, LRRT3, HO 2, Table 4). 
Similar to plasma results, no differences in overall brain 
protein profile was detected between FTD-Tau and FTD-
TDP subtypes (p > 0.05).

Discussion
In this plasma proteomics study, we measured 1303 
proteins in over 260 human plasma samples to identify 
protein profiles for the specific diagnosis of FTD and its 
pathological subtypes. We found a difference in over-
all protein profile between FTD, AD and controls, but 
none of the plasma proteins was specifically associated to 
FTD. Importantly, we identified a plasma protein panel 
that discriminated FTD from AD patients, but not FTD 
from controls. No plasma or tissue protein changes were 
detected between FTD pathological subtypes.

To our knowledge, we were the first to apply proteom-
ics in blood plasma of genetically or pathologically con-
firmed FTLD patients [30]. We found a difference in 
overall plasma protein profiles between FTD, AD patients 
and controls, which could be attributed to six proteins. 
All these proteins were upregulated in AD compared to 
FTD patients and controls, which suggests that none of 
the proteins identified are associated to FTD pathogen-
esis. In line with these findings, our bootstrap classifi-
cation exercises identified a combination of 61 proteins 
demarcating FTD patients and non-demented controls 
with limited accuracy (AUC: 0.61) and large confidence 
intervals, underpinning the insufficient diagnostic accu-
racy and further supporting the lack of specific plasma 
protein signals specifically associated to FTD. These 
results contrast with previous unbiased proteomics stud-
ies performed in CSF samples, including ours, in which 
several CSF FTD biomarker candidates were identified 

Table 2 Plasma proteins from global test comparing FTD, AD 
and controls

Plasma proteins that attributed to a difference in expression profile between 
FTD, AD and controls after correction for multiple testing

All proteins were upregulated in AD compared to FTD and controls. Models were 
corrected for age and sex

FN 1.3 fibronectin fragment 3, FN 1.4 fibronectin fragment 4, VWF Von Willebrand 
factor, ECM1 extracellular matrix protein 1, ApoE apolipoprotein epsilon, AD 
Alzheimer’s disease
a Represent the t statistics associated to the Global testing

Name Associated 
with status

Statistica Std. dev p value

FN1.3 AD 8.72 0.406 2.26e−10

Fibronectin AD 7.39 0.405 5.07e−09

FN1.4 AD 7.18 0.406 2.04e−08

VWF AD 7.01 0.407 3.65e−08

ECM1 AD 4.23 0.398 1.94e−05

ApoE AD 5.68 0.406 9.79e−07

Fig. 1 Receiver operating characteristic (ROC) curves discriminating FTD from controls or AD based on plasma protein sets. Black line is the mean 
area under the curve (AUC) after bootstrapping with 1000 resampling. A FTD versus controls, B FTD versus AD. FTD frontotemporal dementia, AD 
Alzheimer’s disease
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[31, 32]. Whether such discrepancies are driven by the 
different technologies (i.e. aptamer based protein array 
vs. unbiased mass spectrometry) or the different biol-
ogy underlying these matrices (CSF vs. plasma) remains 
to be established. Current high-throughput proteome 
arrays (e.g. aptamer based, proximity ligation assays) 
are dependent on the protein library used, and thus may 
fail to capture the full proteome differences detected by 
unbiased mass spectrometry studies. Still, several prot-
eomics studies have already highlighted the low overlap 
and correlations between CSF and plasma proteomes 
even when the same technology is used [33, 34]. Both 

factors, i.e. technological and biological matrix bias, 
likely contribute to the discrepancies with previous CSF 
FTD proteomics studies. Considering that the number of 
FTD and AD cases analyzed were comparable, the lack 
of plasma biomarker signals associated to FTD might be 
also partly explained by the clinicopathological diversity 
of FTD. The different clinical, genetic and pathological 
phenotypes within the FTD spectrum may hurdle the 
identification of specific biomarkers, highlighting the 
need to include large cohorts in biomarker studies [35].

We identified a panel of 12 blood-based proteins 
discriminating FTD from AD with very high accuracy 
(AUC: 0.99). Three of these proteins [fibronectin frag-
ments 3 and 4 and Von Willebrand Factor (vWF)], were 
among the proteins differentially regulated between 
AD, FTD and controls identified before. Our findings 
are supported by a previous AD aptamer-based study, 
where fibronectin fragment 4 and fibronectin were also 
selected in a panel of plasma proteins to discriminate 
AD patients from controls [16]. The observed high diag-
nostic accuracy supports potential use of this blood-
based biomarker panel for the differential dementia 
diagnosis. However, as an AUC of 0.99 is near to per-
fect, replication of these findings, preferably through 
external validation is needed. The four proteins that 
showed the strongest effect on demarcating FTD from 
AD (largest beta coefficients) and thereby contributed 
most to the discriminatory panel, namely Fibronectin, 
Fibrinogen gamma chain, hnRNPK and vWF, will be 
discussed in more detail. The protein with the strong-
est beta was Fibronectin (FN), a glycoprotein that plays 
a role in tissue repair, and regulating cell attachment, 
motility, hemostasis and embryogenesis [36]. Sev-
eral studies reported higher amounts of high molecu-
lar FN forms in plasma, CSF and frontal and temporal 
cortex of AD patients compared to vascular dementia 

Table 3 Classification protein panel for FTD versus AD

Plasma proteins for the discrimination of FTD versus AD. Model did not select for 
age and sex. Inclusion. Of age and sex did not modify the outcomes

FTD frontotemporal dementia, AD Alzheimer’s disease, RSPO3 R-spondin 3, 
VWF Von Willebrand factor, IDS iduronate 2-sulfatase, IL24 interleukin 24, TPSG1 
tryptase gamma 1, FN 1.3 fibronectin fragment 3, FN 1.4 fibronectin fragment 4, 
TRY3 serine protease 2, HNRNPK heterogeneous nuclear ribonucleoprotein K, TS 
thymidylate synthetase
a Reflect the effect size of the corresponding protein to the classification 
signature. Reference is FTD

Protein name Betaa

FN1.3 − 3.390

Fibrinogen gamma chain dimer − 1.315

hnRNPK − 0.575

vWF − 0.500

IDS − 0.276

RSPO3 − 0.168

STRATIFIN (14‑3‑3 protein sigma) − 0.098

TS − 0.077

IL24 − 0.074

TRY3 − 0.014

FN1.4 − 0.006

TPSG1 0.003

Table 4 Tissue proteins from global test

Tissue proteins that attributed to a difference in expression profile between FTD and control tissue after correction for multiple testing. Proteins were associated with 
either FTLD or control cortex

C4 Complement C4, WIF-1 Wnt inhibitory factor 1, LRRT3 Leucine-rich repeat transmembrane neuronal protein 3, HO-2 Heme oxygenase 2, FTD Frontotemporal 
dementia
a Represent the t statistics associated to the Global testing

Name Associated with status Statistica Std. dev p value

C4 FTD 85.4 10.5 2.30e−06

WIF 1 Control cortex 80.6 10.5 1.30e−05

Discoidin domain receptor 1 FTD 80.4 10.5 1.42e−05

LRRT3 Control cortex 78.0 10.5 2.84e−05

HO 2 Control cortex 71.9 10.5 1.29e−04

Annexin I FTD 61.7 10.5 8.67e−04

Alpha‑1‑antichymotrypsin complex FTD 65.7 10.5 4.39e−04
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and controls [37–39], corroborating our results show-
ing higher levels of fibronectin fragments 3 and 4 in 
AD patients compared to FTD patients and controls. 
Interestingly, increased expression of FN type III 
domain has shown to decrease Aβ secretion in a cellu-
lar model [40]. These data together suggest an increase 
of fibronectin fragments in AD which might potentially 
convey a neuroprotective effect. The protein with the 
second highest beta was Fibrinogen gamma chain, a 
blood borne glycoprotein essential to form an insolu-
ble fibrin matrix. It is associated to amyloid deposi-
tion [41] and brain atrophy [42]. The lower levels of 
this protein in AD compared to FTD and controls [43] 
indicate that this marker is specifically associated to 
AD pathogenesis. Experimental and neuropathological 
studies indeed suggest that this protein may contrib-
ute to AD by altering thrombosis and fibrinolysis [44]. 
hnRNP K is one of the major pre-mRNA-binding pro-
teins, likely playing a role in the nuclear metabolism of 
hnRNAs and in the p53/TP53 response to DNA dam-
age [45]. A previous proteome study found an upreg-
ulation of this protein in frontal cortex of AD cases 
[46]. Recent exciting evidence showed mislocalisation 
of hnRNA K in pyramidal neurons of the frontal cor-
tex to be a novel neuropathological feature associated 
with both frontotemporal lobar degeneration and age-
ing [47, 48]. Future studies should therefore address 
the potential role of this protein in both FTD and AD 
to understand how it contributes to discriminate these 
disorders. The protein with the fourth highest beta was 
VWF, a glycoprotein with critical functions in hemosta-
sis [49]. It was identified by the global test and was also 
part of the protein panel discriminating AD and FTD. 
VWF has frequently been studied in AD since vascular 
damage plays a role in the pathogenesis of AD demen-
tia. However, results of VWF levels in AD patients 
have been conflicting. One CSF proteomics study that 
aimed to discriminate AD from non-AD patients  has 
shown discrepant results in CSF VWF levels between 
three independent cohorts [37]. Other studies reported 
no difference in VWF levels in blood plasma, CSF or 
brain cells between AD and controls [50, 51], and one 
large population study reported higher levels of VWF 
in blood plasma of AD patients [52]. We recently 
observed increased levels of CSF VWF in our ongoing 
AD studies (Del Campo et al. under review, Additional 
file  2: Fig. S3). A possible speculative explanation for 
these discrepant findings could be that the cohorts that 
reported an increase in VWF levels, including ours, had 
more patients with mixed vascular and AD pathology, 
whereas other cohorts mostly included patients with 
pure AD pathology. It would be very relevant to inves-
tigate the markers identified here together with novel 

promising plasma biomarkers, such as plasma pTau 
levels,  which shows very good discrimination between 
AD and FTD patients, being specifically increased in 
AD [53–55].

We could not find differentially regulated proteins 
between Tau and TDP pathological subtypes in tissue 
or plasma, nor could we identify discriminatory plasma 
protein signatures between these subtypes. Throughout 
literature, it has been challenging to identify and validate 
protein alterations between both pathological subtypes. 
For CSF,  previous proteomic studies reported several 
differentially regulated proteins [31] or a biomarker panel  
enabling sensitive differentiation between TDP and Tau 
pathology [56], although independent multicenter valida-
tion and replication on different platforms is still needed. 
The lack of a biomarker (panel) for FTD subtypes with 
feasibility in clinical practice thus far, could have several 
possible explanations. First, a potential explanation is the 
heterogeneity within Tau and TDP pathological subtypes, 
such as the different isoforms of TDP and Tau pathology, 
which have not been accounted for in fluid biomarker 
studies so far [57, 58]. For instance, patients with the 
TDP-A isoform might have a different protein signature 
than patients with the TDP-C isoform. This heterogene-
ity will complicate the search for a single discriminatory 
protein panel for TDP versus Tau, and will require larger 
and more homogeneous sample sizes, which are scarce. 
An alternative explanation could be that both pathologi-
cal subtypes might have similar downstream pathologi-
cal pathways leading to FTD. For instance, local TDP and 
Tau pathology could potentially be initiating the same 
prominent cascades, represented in similar proteomic 
changes in body fluids, ultimately leading to the neurode-
generative changes seen in FTD. This could also explain 
why both pathological subtypes are seen across the clini-
cal FTD spectrum [10]. Lastly, in most FTD biomarker 
studies familial and sporadic cases are often grouped 
to achieve a large sample size. However, the question 
remains whether the familial form of FTD with GRN, 
C9orf72 or MAPT mutations is biologically similar to 
sporadic FTD patients with TDP or Tau proteins. Future 
studies where (plasma) protein profiles of familial and 
sporadic FTD subtypes are independently studied could 
provide more clarity.

Proteomics in body fluids such as blood plasma or 
CSF can provide valuable mechanistic information as to 
whether post-mortem pathological changes are also seen 
in earlier ante-mortem disease stages, or whether there 
are also systemic responses involved in CNS diseases. 
As suggested also by the Consensus report of The Rea-
gan Working group in 1998 [59], comparison of biofluid 
results with the expression of those proteins in brain tis-
sue would be the most direct proof for a relation with the 
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brain pathology. Indeed, pathological correlates are the 
basis for the now widely used biomarkers in AD, such as 
amyloid beta and pTau. From the six proteins identified 
in our exploratory tissue proteome investigation, four 
were detected also in a recent mass spectrometry study 
(C4, Annexin I, Ho2 and Alpha-1-antichymotrypsin 
complex) [60]. In such study C4 and Annexin I were also 
increased or tended to be increased in FTD compared to 
controls. However, we observed that the proteins differ-
entially regulated in FTD brain tissue were not dysregu-
lated in plasma, suggesting that the changes identified in 
brain are not reflected in plasma. Despite the exploratory 
nature of these findings, the results are in line with the 
limited association between CSF and plasma proteomes 
discussed above, and more recently, between brain and 
plasma or serum proteomes [61, 62]. This might be 
explained by the redundancy of plasma proteins from the 
periphery, which may mask low concentration and sub-
tle changes of CNS-derived proteins in plasma. In addi-
tion, the lack of plasma FTD changes may also suggest 
no systemic changes underlying FTD pathophysiology. It 
is important to note that biofluid based biomarker levels 
are dynamic and may change along the disease process 
[63]. Thus, the different time point of collection (i.e. ante-
mortem for plasma vs. post-mortem for tissue), may also 
explain the lack of overlap. However, the small sample 
size of the tissue sections prohibits strong conclusions.

Among the limitations of our study is that despite the 
large number of plasma proteins analyzed, the aptamer-
based proteomic platform is still a targeted analysis 
dependent on the protein library. Thus, we cannot exclude 
that other relevant or powerful brain-disease related bio-
markers are not present within the aptamer library (i.e. 
Somamer library [64]). Nevertheless, the hypothesis free 
approach allowed us to identify novel proteins in addi-
tion to previously described proteins. Another limitation 
is that there was some center bias, because especially AD 
and control samples were collected from several sites 
(five). However, the majority (two third) of the AD sam-
ples were from the two sites that provided also the FTD 
samples, and all centers collected their samples under the 
same standardized protocol. Another limitation is the 
lack of replication of our findings in an independent vali-
dation cohort, especially considering the high accuracy 
of our FTD vs AD discriminatory panel. Validation of the 
plasma panel is technically not feasible yet on the Somas-
can technology. However, some of the markers within 
the panel have been validated by others and also within 
our current CSF studies using alternative platforms (e.g., 
vWF and RSPO3, Additional file  2: Fig. S3. Del Campo 
et al. under review). Novel large proteomics studies using 
an independent platform (proximity extension assay) 
with versatility of building smaller panels in plasma of 

FTD patients are current underway in the course of the 
JPND bPRIDE project (https:// www. neuro degen erati 
onres earch. eu/ wp- conte nt/ uploa ds/ 2020/ 05/ PROJE CT- 
bPRIDE. pdf; neurodegenerationresearch.eu). It should 
be noted that different type proteomic platforms can now 
be used for discovery of novel plasma-based biomarkers, 
from unbiased based mass-spectrometry platforms to 
targeted high throughput proteome arrays. All have their 
own pros and cons in relation to protein coverage, sen-
sitivity, specificity, dynamic range, or translatability into 
diagnostic assays [35, 65].

The strengths of our study are that all our FTD cases 
had confirmed diagnosis based on genetic and/or patho-
logical confirmation. Because FTD is clinically heteroge-
neous and does not correlate strongly to its pathologic 
subtypes, cohorts with known pathologic subtypes are 
important to provide relevant insights into underlying 
disease mechanisms. Of note, some of the AD plasma 
samples analyzed in this study came from non-special-
ized memory clinics and were diagnosed using clinical 
criteria without AD CSF biomarker confirmation.

Conclusions
In summary, we analyzed an unprecedented large num-
ber of proteins (1303) in plasma of FTD cases with con-
firmed underlying neuropathology together with AD 
and cognitively unimpaired controls. We observed that 
the plasma or tissue proteome were essentially similar 
between FTLD-Tau and FTLD-TDP. When the overall 
FTD group was analysed, we identified six plasma pro-
teins differentially regulated between AD, FTD, and con-
trols. However, these were primarily associated to AD 
dementia rather than FTD, underpinning the challenges 
to identify robust single markers associated to FTD. Clas-
sification exercises revealed a plasma protein panel dis-
criminating FTD from AD with high accuracy, which 
needs to be validated in independent cohorts. Once vali-
dated, FTD should only be considered when the protein 
biomarker results are compatible with the clinical pres-
entation, as these proteins might be useful to exclude AD, 
rather than to specifically detect FTD pathophysiology. 
Further studies should show if these markers are useful 
to differentiate FTD from psychiatric disorders, such as 
observed for NfL [11, 66–68]. The lack of plasma protein 
signals specifically associated to FTD-confirmed cases 
might be caused by the heterogeneity of this disorder, 
highlighting that the quest of FTD-specific biomarkers 
will likely require high-collaborative biomarker stud-
ies using large and well-characterized FTD cohorts [35]. 
Such heterogeneity will likely hamper the identification 
of a single FTD-specific biofluid marker. Thus, measure-
ments of additional matrices or targets (e.g., RNA, extra-
cellular vesicles), integration of multi-omics approaches, 

https://www.neurodegenerationresearch.eu/wp-content/uploads/2020/05/PROJECT-bPRIDE.pdf
https://www.neurodegenerationresearch.eu/wp-content/uploads/2020/05/PROJECT-bPRIDE.pdf
https://www.neurodegenerationresearch.eu/wp-content/uploads/2020/05/PROJECT-bPRIDE.pdf
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system-based analysis and/or the development of com-
puter assisted algorithms will likely be needed to capture 
the full complexity FTD and its pathological subtypes 
[35, 60, 69, 70].
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