1,231 research outputs found
Expected sensitivity of ARGO-YBJ to detect point gamma-ray sources
ARGO-YBJ is a full coverage air shower detector currently under construction
at the Yangbajing Laboratory (4300 m a.s.l., Tibet, China). First data obtained
with a subset of the apparatus will be available in summer 2003 while the full
detector operation is expected in 2005. One of the main aims of ARGO-YBJ is the
observation of gamma-ray sources, at an energy threshold of a few hundreds GeV.
In this paper we present the expected sensitivity to detect point gamma ray
sources, with particular attention to the Crab Nebula. According to our
simulations a Crab-like signal could be detected in one year of operation with
a statistical significance of 10 standard deviations, without any gamma/hadron
discrimination.Comment: 4 pages, 2 Postscript figure
Nuclear re-interaction effects in quasi-elastic neutrino nucleus scattering
The quasi-elastic neutrino-nucleus cross section has been calculated by using
a Fermi gas model corrected to consider the re-scattering between the emitted
nucleon and the rest nucleus. As an example of the relevance of this effect we
show results for the muon production cross section on 16O target.Comment: 7 pages, 4 Postscript figures, Contribution to NuInt01 Workshop, KEK,
Tsukuba, Japa
Identification of Showers with Cores Outside the ARGO-YBJ Detector
In any EAS array, the rejection of events with shower cores outside the
detector boundaries is of great importance. A large difference between the true
and the reconstructed shower core positions may lead to a systematic
miscalculation of some shower characteristics. Moreover, an accurate
determination of the shower core position for selected internal events is
important to reconstruct the primary direction using conical fits to the shower
front, improving the detector angular resolution, or to performe an efficient
gamma/hadron discrimination. In this paper we present a procedure able to
identify and reject showers with cores outside the ARGO-YBJ carpet boundaries.
A comparison of the results for gamma and proton induced showers is reported.Comment: 4 pages, to be published in the Proceedings of the 28th International
Cosmic Ray Conference (Tsukuba, Japan 2003
Final state interaction effects in neutrino-nucleus quasielastic scattering
We consider the charged-current quasielastic scattering of muon neutrinos on
an Oxygen 16 target, described within a relativistic shell model and, for
comparison, the relativistic Fermi gas. Final state interactions are described
in the distorted wave impulse approximation, using both a relativistic mean
field potential and a relativistic optical potential, with and without
imaginary part. We present results for inclusive cross sections at fixed
neutrino energies in the range 200 MeV - 1 GeV, showing that final
state interaction effects can remain sizable even at large energies.Comment: 4 pages, 4 figures; poster session of the Third International
Workshop on Neutrino-Nucleus Interactions in the Few GeV Region (NuInt04),
Gran Sasso (Italy), March 17-21, 2004; to appear in the proceeding
Effects of nuclear re-interactions in quasi-elastic neutrino-nucleus scattering
The effects of nuclear re-interactions in the quasi-elastic neutrino-nucleus
scattering are investigated with a phenomenological model. We found that the
nuclear responses are lowered and their maxima are shifted towards higher
excitation energies. This is reflected on the total neutrino-nucleus cross
section in a general reduction of about 15% for neutrino energies above 300
MeV.Comment: 15 pages, 5 figures. Submitted to AstroParticle Physic
Atmospheric Calorimetry above 10 eV: Shooting Lasers at the Pierre Auger Cosmic-Ray Observatory
The Pierre Auger Cosmic-Ray Observatory uses the earth's atmosphere as a
calorimeter to measure extensive air-showers created by particles of
astrophysical origin. Some of these particles carry joules of energy. At these
extreme energies, test beams are not available in the conventional sense. Yet
understanding the energy response of the observatory is important. For example,
the propagation distance of the highest energy cosmic-rays through the cosmic
microwave background radiation (CMBR) is predicted to be strong function of
energy. This paper will discuss recently reported results from the observatory
and the use of calibrated pulsed UV laser "test-beams" that simulate the
optical signatures of ultra-high energy cosmic rays. The status of the much
larger 200,000 km companion detector planned for the northern hemisphere
will also be outlined.Comment: 6 pages, 11 figures XIII International Conference on Calorimetry in
High Energy Physic
Observation of TeV gamma rays from the Cygnus region with the ARGO-YBJ experiment
We report the observation of TeV gamma-rays from the Cygnus region using the
ARGO-YBJ data collected from 2007 November to 2011 August. Several TeV sources
are located in this region including the two bright extended MGRO J2019+37 and
MGRO J2031+41. According to the Milagro data set, at 20 TeV MGRO J2019+37 is
the most significant source apart from the Crab Nebula. No signal from MGRO
J2019+37 is detected by the ARGO-YBJ experiment, and the derived flux upper
limits at 90% confidence level for all the events above 600 GeV with medium
energy of 3 TeV are lower than the Milagro flux, implying that the source might
be variable and hard to be identified as a pulsar wind nebula. The only
statistically significant (6.4 standard deviations) gamma-ray signal is found
from MGRO J2031+41, with a flux consistent with the measurement by Milagro.Comment: 14 pages, 4 figure
Mean Interplanetary Magnetic Field Measurement Using the ARGO-YBJ Experiment
The sun blocks cosmic ray particles from outside the solar system, forming a
detectable shadow in the sky map of cosmic rays detected by the ARGO-YBJ
experiment in Tibet. Because the cosmic ray particles are positive charged, the
magnetic field between the sun and the earth deflects them from straight
trajectories and results in a shift of the shadow from the true location of the
sun. Here we show that the shift measures the intensity of the field which is
transported by the solar wind from the sun to the earth.Comment: 6 papges,3 figure
Search for Gamma Ray Bursts with the Argo-YBJ Detector in Scaler Mode
We report on the search for Gamma Ray Bursts (GRBs) in the energy range 1-100
GeV in coincidence with the prompt emission detected by satellites using the
Astrophysical Radiation with Ground-based Observatory at YangBaJing (ARGO-YBJ)
air shower detector. Thanks to its mountain location (Yangbajing, Tibet, P.R.
China, 4300 m a.s.l.), active surface (about 6700 m**2 of Resistive Plate
Chambers), and large field of view (about 2 sr, limited only by the atmospheric
absorption), the ARGO-YBJ air shower detector is particularly suitable for the
detection of unpredictable and short duration events such as GRBs. The search
is carried out using the "single particle technique", i.e. counting all the
particles hitting the detector without measurement of the energy and arrival
direction of the primary gamma rays.
Between 2004 December 17 and 2009 April 7, 81 GRBs detected by satellites
occurred within the field of view of ARGO-YBJ (zenith angle < 45 deg). It was
possible to examine 62 of these for >1 GeV counterpart in the ARGO-YBJ data
finding no statistically significant emission. With a lack of detected spectra
in this energy range fluence upper limits are profitable, especially when the
redshift is known and the correction for the extragalactic absorption can be
considered. The obtained fluence upper limits reach values as low as 10**{-5}
erg cm**{-2} in the 1-100 GeV energy region.
Besides this individual search for a higher energy counterpart, a statistical
study of the stack of all the GRBs both in time and in phase was made, looking
for a common feature in the GRB high energy emission. No significant signal has
been detected.Comment: accepted for publication in Ap
- …
