373 research outputs found

    Lepton charge and neutrino mixing in pion decay processes

    Full text link
    We consider neutrino mixing and oscillations in quantum field theory and compute the neutrino lepton charge in decay processes where neutrinos are generated. We also discuss the proper definition of flavor charge and states and clarify the issues of the possibility of different mass parameters in field mixing.Comment: 13 page

    The General Theory of Quantum Field Mixing

    Get PDF
    We present a general theory of mixing for an arbitrary number of fields with integer or half-integer spin. The time dynamics of the interacting fields is solved and the Fock space for interacting fields is explicitly constructed. The unitary inequivalence of the Fock space of base (unmixed) eigenstates and the physical mixed eigenstates is shown by a straightforward algebraic method for any number of flavors in boson or fermion statistics. The oscillation formulas based on the nonperturbative vacuum are derived in a unified general formulation and then applied to both two and three flavor cases. Especially, the mixing of spin-1 (vector) mesons and the CKM mixing phenomena in the Standard Model are discussed emphasizing the nonperturbative vacuum effect in quantum field theory

    Power-law running of the effective gluon mass

    Get PDF
    The dynamically generated effective gluon mass is known to depend non-trivially on the momentum, decreasing sufficiently fast in the deep ultraviolet, in order for the renormalizability of QCD to be preserved. General arguments based on the analogy with the constituent quark masses, as well as explicit calculations using the operator-product expansion, suggest that the gluon mass falls off as the inverse square of the momentum, relating it to the gauge-invariant gluon condensate of dimension four. In this article we demonstrate that the power-law running of the effective gluon mass is indeed dynamically realized at the level of the non-perturbative Schwinger-Dyson equation. We study a gauge-invariant non-linear integral equation involving the gluon self-energy, and establish the conditions necessary for the existence of infrared finite solutions, described in terms of a momentum-dependent gluon mass. Assuming a simplified form for the gluon propagator, we derive a secondary integral equation that controls the running of the mass in the deep ultraviolet. Depending on the values chosen for certain parameters entering into the Ansatz for the fully-dressed three-gluon vertex, this latter equation yields either logarithmic solutions, familiar from previous linear studies, or a new type of solutions, displaying power-law running. In addition, it furnishes a non-trivial integral constraint, which restricts significantly (but does not determine fully) the running of the mass in the intermediate and infrared regimes. The numerical analysis presented is in complete agreement with the analytic results obtained, showing clearly the appearance of the two types of momentum-dependence, well-separated in the relevant space of parameters. Open issues and future directions are briefly discussed.Comment: 37 pages, 5 figure

    Mixing and oscillations of neutral particles in Quantum Field Theory

    Full text link
    We study the mixing of neutral particles in Quantum Field Theory: neutral boson field and Majorana field are treated in the case of mixing among two generations. We derive the orthogonality of flavor and mass representations and show how to consistently calculate oscillation formulas, which agree with previous results for charged fields and exhibit corrections with respect to the usual quantum mechanical expressions.Comment: 8 pages, revised versio

    Neutrino oscillations from relativistic flavor currents

    Full text link
    By resorting to recent results on the relativistic currents for mixed (flavor) fields, we calculate a space-time dependent neutrino oscillation formula in Quantum Field Theory. Our formulation provides an alternative to existing approaches for the derivation of space dependent oscillation formulas and it also accounts for the corrections due to the non-trivial nature of the flavor vacuum. By exploring different limits of our formula, we recover already known results. We study in detail the case of one-dimensional propagation with gaussian wavepackets both in the relativistic and in the non-relativistic regions: in the last case, numerical evaluations of our result show significant deviations from the standard formula.Comment: 16 pages, 4 figures, RevTe

    Renormalization-Scale-Invariant PQCD Predictions for R_e+e- and the Bjorken Sum Rule at Next-to-Leading Order

    Get PDF
    We discuss application of the physical QCD effective charge αV\alpha_V, defined via the heavy-quark potential, in perturbative calculations at next-to-leading order. When coupled with the Brodsky-Lepage-Mackenzie prescription for fixing the renormalization scales, the resulting series are automatically and naturally scale and scheme independent, and represent unambiguous predictions of perturbative QCD. We consider in detail such commensurate scale relations for the e+ee^+e^- annihilation ratio Re+eR_{e^+e^-} and the Bjorken sum rule. In both cases the improved predictions are in excellent agreement with experiment.Comment: 13 Latex pages with 5 figures; to be published in Physical Review

    Pseudoscalar Meson Mixing in Effective Field Theory

    Get PDF
    We show that for any effective field theory of colorless meson fields, the mixing schemes of particle states and decay constants are not only related but also determined exclusively by the kinetic and mass Lagrangian densities. In the general case, these are bilinear in terms of the intrinsic fields and involve non-diagonal kinetic and mass matrices. By applying three consecutive steps this Lagrangian can be reduced into the standard quadratic form in terms of the physical fields. These steps are : (i) the diagonalization of the kinetic matrix, (ii) rescaling of the fields, and (iii) the diagonalization of the mass matrix. In case, where the dimensions of the non-diagonal kinetic and mass sub-matrices are respectively, k×kk\times k and n×nn\times n, this procedure leads to mixing schemes which involve [k(k1)/2]+[n(n1)/2][k(k-1)/2] + [n(n-1)/2] angles and kk field rescaling parameters. This observation holds true irrespective with the type of particle interactions presumed. The commonly used mixing schemes, correspond to a proper choice of the kinetic and mass matrices, and are derived as special cases. In particular, η\eta-η\eta ' mixing, requires one angle, if and only if, the kinetic term with the intrinsic fields has a quadratic form.Comment: REVTeX, 6 page

    High salt reduces the activation of IL-4- and IL-13-stimulated macrophages

    Get PDF
    A high intake of dietary salt (NaCl) has been implicated in the development of hypertension, chronic inflammation, and autoimmune diseases. We have recently shown that salt has a proinflammatory effect and boosts the activation of Th17 cells and the activation of classical, LPS-induced macrophages (M1). Here, we examined how the activation of alternative (M2) macrophages is affected by salt. In stark contrast to Th17 cells and M1 macrophages, high salt blunted the alternative activation of BM-derived mouse macrophages stimulated with IL-4 and IL-13, M(IL-4+IL-13) macrophages. Salt-induced reduction of M(IL-4+IL-13) activation was not associated with increased polarization toward a proinflammatory M1 phenotype. In vitro, high salt decreased the ability of M(IL-4+IL-13) macrophages to suppress effector T cell proliferation. Moreover, mice fed a high salt diet exhibited reduced M2 activation following chitin injection and delayed wound healing compared with control animals. We further identified a high salt-induced reduction in glycolysis and mitochondrial metabolic output, coupled with blunted AKT and mTOR signaling, which indicates a mechanism by which NaCl inhibits full M2 macrophage activation. Collectively, this study provides evidence that high salt reduces noninflammatory innate immune cell activation and may thus lead to an overall imbalance in immune homeostasis

    Can we distinguish between h^{SM} and h^0 in split supersymmetry?

    Full text link
    We investigate the possibility to distinguish between the Standard Model Higgs boson and the lightest Higgs boson in Split Supersymmetry. We point out that the best way to distinguish between these two Higgs bosons is through the decay into two photons. It is shown that there are large differences of several percent between the predictions for \Gamma(h\to\gamma\gamma) in the two models, making possible the discrimination at future photon-photon colliders. Once the charginos are discovered at the next generation of collider experiments, the well defined predictions for the Higgs decay into two photons will become a cross check to identify the light Higgs boson in Split Supersymmetry.Comment: 8 pages, 3 Figures, typos fixed, version published in J.Phys. G31 (2005) 563-56
    corecore