2,921 research outputs found
Asymmetric Colliding Nuclear Matter Approach in Heavy Ion Collisions
The early stage of a heavy ion collision is governed by local non-equilibrium
momentum distributions which have been approximated by colliding nuclear matter
configurations, i.e. by two Lorentz elongated Fermi ellipsoids. This approach
has been extended from the previous assumption of symmetric systems to
asymmetric 2-Fermi sphere configurations, i.e. to different densities. This
provides a smoother transition from the limiting situation of two
interpenetrating currents to an equilibrated system. The model is applied to
the dynamical situations of heavy ion collisions at intermediate energies
within the framework of relativistic transport (RBUU) calculations. We find
that the extended colliding nuclear matter approach is more appropriate to
describe collective reaction dynamics in terms of flow observables, in
particular, for the elliptic flow at low energies.Comment: 21 pages, 8 figures, accepted for publication in Nuclear Physics
Flow angle from intermediate mass fragment measurements
Directed sideward flow of light charged particles and intermediate mass
fragments was measured in different symmetric reactions at bombarding energies
from 90 to 800 AMeV. The flow parameter is found to increase with the charge of
the detected fragment up to Z = 3-4 and then turns into saturation for heavier
fragments. Guided by simple simulations of an anisotropic expanding thermal
source, we show that the value at saturation can provide a good estimate of the
flow angle, , in the participant region. It is found that
depends strongly on the impact parameter. The excitation
function of reveals striking deviations from the ideal
hydrodynamical scaling. The data exhibit a steep rise of \Theta_{\flow} to a
maximum at around 250-400 AMeV, followed by a moderate decrease as the
bombarding energy increases further.Comment: 28 pages Revtex, 6 figures (ps files), to appear in Nucl.Phys.
Abundance of Delta Resonances in 58Ni+58Ni Collisions between 1 and 2 AGeV
Charged pion spectra measured in 58Ni-58Ni collisions at 1.06, 1.45 and 1.93
AGeV are interpreted in terms of a thermal model including the decay of Delta
resonances. The transverse momentum spectra of pions are well reproduced by
adding the pions originating from the Delta-resonance decay to the component of
thermal pions, deduced from the high transverse momentum part of the pion
spectra. About 10 and 18% of the nucleons are excited to Delta states at
freeze-out for beam energies of 1 and 2 AGeV, respectively.Comment: 14 pages, LaTeX with 3 included figures; submitted to Physics Letters
Stopping and Radial Flow in Central 58Ni + 58Ni Collisions between 1 and 2 AGeV
The production of charged pions, protons and deuterons has been studied in
central collisions of 58Ni on 58Ni at incident beam energies of 1.06, 1.45 and
1.93 AGeV. The dependence of transverse-momentum and rapidity spectra on the
beam energy and on the centrality of the collison is presented. It is shown
that the scaling of the mean rapidity shift of protons established for AGS and
SPS energies is valid down to 1 AGeV. The degree of nuclear stopping is
discussed; the IQMD transport model reproduces the measured proton rapidity
spectra for the most central events reasonably well, but does not show any
sensitivity between the soft and the hard equation of state (EoS). A radial
flow analysis, using the midrapidity transverse-momentum spectra, delivers
freeze-out temperatures T and radial flow velocities beta_r which increase with
beam energy up to 2 AGeV; in comparison to existing data of Au on Au over a
large range of energies only beta_r shows a system size dependence
Heavy ion collisions with non-equilibrium Dirac-Brueckner mean fields
The influence of realistic interactions on the reaction dynamics in
intermediate energy heavy ion collisions is investigated. The mean field in
relativistic transport calculations is derived from microscopic Dirac-Brueckner
(DB) self-energies, taking non-equilibrium effects, in particular the
anisotropy of the local phase space configurations, into account. Thus this
approach goes beyond the local density approximation. A detailed analysis of
various in-plane and out-of-plane flow observables is presented for Au on Au
reactions at incident energies ranging from 250 to 800 A.MeV and the results
are compared to recent measurements of the FOPI collaboration. An overall good
agreement with in-plane flow data and a reasonable description of the
out-of-plane emission is achieved. For these results the intrinsic momentum
dependence of the non-equilibrium mean fields is important. On the other hand,
the local density approximation with the same underlying DB forces as well as a
standard non-linear version of the model are less successful in
describing the present data. This gives evidence of the applicability of self
energies derived from the DB approach to nuclear matter also far from
saturation and equilibrium.Comment: 63 pages Latex, using Elsevier style, 20 ps-figures, to appear in
Nucl. Phys.
Rapidity distribution as a probe for elliptical flow at intermediate energies
Interplay between the spectator and participant matter in heavy-ion
collisions is investigated within isospin dependent quantum molecular dynamics
(IQMD) model in term of rapidity distribution of light charged particles. The
effect of different types and size rapidity distributions is studied in
elliptical flow. The elliptical flow patterns show important role of the nearby
spectator matter on the participant zone. This role is further explained on the
basis of passing time of the spectator and expansion time of the participant
zone. The transition from the in-plane to out-of-plane is observed only when
the mid-rapidity region is included in the rapidity bin, otherwise no
transition occurs. The transition energy is found to be highly sensitive
towards the size of the rapidity bin, while weakly on the type of the rapidity
distribution. The theoretical results are also compared with the experimental
findings and are found in good agreement.Comment: 8 figure
Transition from in-plane to out-of-plane azimuthal enhancement in Au+Au collisions
The incident energy at which the azimuthal distributions in semi-central
heavy ion collisions change from in-plane to out-of-plane enhancement, E_tran,
is studied as a function of mass of emitted particles, their transverse
momentum and centrality for Au+Au collisions. The analysis is performed in a
reference frame rotated with the sidewards flow angle, Theta_flow, relative to
the beam axis. A systematic decrease of E_tran as function of mass of the
reaction products, their transverse momentum and collision centrality is
evidenced. The predictions of a microscopic transport model (IQMD) are compared
with the experimental results.Comment: 32 pages, Latex, 22 eps figures, accepted for publication in Nucl.
Phys.
Isospin-tracing: A probe of non-equilibrium in central heavy-ion collisions
Four different combinations of Ru and Zr nuclei, both
as projectile and target, were investigated at the same bombarding energy of
400 MeV using a detector. The degree of isospin mixing between
projectile and target nucleons is mapped across a large portion of the phase
space using two different isospin-tracer observables, the number of measured
protons and the yield ratio. The experimental results
show that the global equilibrium is not reached even in the most central
collisions. Quantitative measures of stopping and mixing are extracted from the
data. They are found to exhibit a quite strong sensitivity to the in-medium
(n,n) cross section used in microscopic transport calculations.Comment: 4 pages RevTeX, 3 figures (ps files), submitted to Phys. Rev. Let
Identification of baryon resonances in central heavy-ion collisions at energies between 1 and 2 AGeV
The mass distributions of baryon resonances populated in near-central
collisions of Au on Au and Ni on Ni are deduced by defolding the spectra
of charged pions by a method which does not depend on a specific resonance
shape. In addition the mass distributions of resonances are obtained from the
invariant masses of pairs. With both methods the deduced mass
distributions are shifted by an average value of -60 MeV/c relative to the
mass distribution of the free resonance, the distributions
descent almost exponentially towards mass values of 2000 MeV/c^2. The observed
differences between and pairs indicate a contribution
of isospin resonances. The attempt to consistently describe the
deduced mass distributions and the reconstructed kinetic energy spectra of the
resonances leads to new insights about the freeze out conditions, i.e. to
rather low temperatures and large expansion velocities.Comment: 30 pages, 13 figures, Latex using documentstyle[12pt,a4,epsfig], to
appear in Eur. Phys. J.
Direct comparison of phase-space distributions of K- and K+ mesons in heavy-ion collisions at SIS energies - evidence for in-medium modifications of kaons ?
The ratio of K- to K+ meson yields has been measured in the systems RuRu at
1.69 A GeV, Ru+Zr at 1.69 A GeV, and Ni+Ni at 1.93 A GeV incident beam kinetic
energy. The yield ratio is observed to vary across the measured phase space.
Relativistic transport-model calculations indicate that the data are best
understood if in-medium modifications of the kaons are taken into account.Comment: 14 pages including 3 figure
- …