102 research outputs found

    Decreased VLDL-Apo B 100 fractional synthesis rate despite hypertriglyceridemia in subjects with type 2 diabetes and nephropathy

    Get PDF
    Subjects with Type 2 Diabetes Mellitus (T2DM) and diabetic nephropathy (DN) often exhibit hypertriglyceridemia. The mechanism(s) of such an increase are poorly known. OBJECTIVE: We investigated VLDL-Apo B 100 kinetics in T2DM subjects with and without DN, and in healthy controls. DESIGN: Stable isotope 13C-leucine infusion, and modelling analysis of tracer-to-tracee ratio dynamics in the protein product pool in the 6-8 hr period following tracer infusion, were employed. SETTING: Male subjects affected by T2DM, either with (n=9) or without (n=5) DN, and healthy male controls (n=6), were studied under spontaneous glycemic levels in the post-absorptive state. RESULTS: In the T2DM patients with DN, plasma triglyceride (TG) (2.2\ub10.8 mmol/L, Mean\ub1SD) and VLDL-Apo B 100 (17.4\ub110.4 mg/dl) concentrations, and VLDL-Apo B 100 pool (0.56\ub10.29 g), were 3e60-80% greater (p<0.05 or less) than those of the T2DM subjects without DN (TG: 1.4\ub10.5 mmol/L; VLDL-Apo B 100: 9.9\ub12.5 mg/dl; VLDL-Apo B 100 pool: 0.36\ub10.09 g), and 3e80-110% greater (p<0.04 or less) than those of nondiabetic controls (TG: 1.2\ub10.4 mmol/L; VLDL-Apo B 100: 8.2\ub11.7 mg/dl; VLDL-Apo B 100: 0.32\ub10.09 g). In sharp contrast however, in the subjects with T2DM and DN, VLDL-Apo B 100 FSR was 6550% lower (4.8\ub12.2 pools/day) than that of either the T2DM subjects without DN (9.9\ub14.3 pools/day, p<0.025) or the control subjects (12.5\ub19.1 pools/day, p<0.04). CONCLUSIONS: The hypertriglyceridemia of T2DM patients with DN is not due to hepatic VLDL-Apo B 100 overproduction, which is decreased, but it should be attributed to decreased apolipoprotein removal

    Curcumin suppresses leukemia cell proliferation by downregulation of P13K/AKT/mTOR signalling pathway

    Get PDF
    Purpose: To investigate the effect of curcumin ester on the proliferation of leukemia cell lines in vitro. Methods: Changes in WEHI-3 and THP 1 cell viabilities were measured using Cell Counting Kit 8 (CCK 8). Analysis of cell cycle and determination of apoptosis were carried out using propidium iodide and Annexin V fluorescein isothiocyanate staining. Transmission electron microscopy was used for observing the presence of apoptotic features in cells. Results: Treatment with curcumin ester for 72 h caused significant reduction in the proliferation of WEHI-3 and THP 1 cells. Curcumin ester, at a dose of 50 µM, decreased the proliferations of WEHI-3 and THP 1 cells to 28 and 32 %, respectively. On exposure to curcumin ester for 72 h, cell cycle in WEHI-3 cells was arrested in G1/G0 phase. Curcumin ester at doses of 25, 30 and 50 µM enhanced apoptosis in WEHI-3 cells to 46, 58 and 64 %, respectively. Curcumin ester suppressed the levels of phosphoinositide 3 kinase (PI3K), protein kinase B (AKT) and mechanistic target of rapamycin (mTOR) protein and mRNA in WEHI-3 cells. In curcumin ester-treated WEHI-3 cells, the presence of apop¬totic bodies increased significantly and concentration-dependently. Conclusion: These results demonstrate that curcumin ester inhibits leukemia cell proliferation by inducing apoptosis and arresting cell cycle in G1/G0 phase, probably via suppression of PI3K, AKT and mTOR, and promotion of PTEN. Thus, curcumin ester has potentials for use in the development of an effective treatment strategy for leukemia

    Docking Study to Predict the Efficacy of Phosphatidylinositol 3-Kinase α Inhibitors

    Get PDF
    The phosphatidylinositol 3-kinase (PI3K) family comprises lipid kinases that cross-link signals between living cells and their surroundings. PI3Ks are classified into several groups and isoforms with specific characteristics and functions. Genes encoding PI3Ks are mutated in several types of cancer, and their isoforms have varying capacity in promoting cell signaling and cancer progression. Many compounds have been introduced as PI3Kα inhibitors, but not all of them have the same inhibitory effects. For successful PI3K-related biomedical experiments, it is vital to select the most specific and potent compounds with the highest inhibitory effects for targeting this kinase. In this study, we investigate 28 well-recognized PI3Kα inhibitors through predicting their specificity and potency using the docking software AutoDock Vina. Our data showed that PF 05212384 had the highest docking score (−9.2 kcal/mol), and 3-methyladenine had the lowest docking score (−4.8 kcal/mol). Our data also showed different types of interactions and bonds formed between the inhibitors and protein residues. In conclusion, PF 05212384 and AZD 6482 compounds are the best candidates for targeting PI3Kα. In addition to hydrophobic interactions in the PI3Kα binding pocket, the formation of hydrogen bonds between these inhibitors and binding pocket residues was confirmed

    An Extracellular Pectinase from ISH16 Bacteria Isolated Induced by Coffee Pulp Waste Substrate

    Get PDF
    An α-1,4-glycosidic bonds galactoses pectin, mainly composed of a D-galacturonic acid chain, are important biomaterial widely used in industries. Utilizing this material, a bioprocess, including the biocatalysis pectinase, is often needed. Pectinase production was optimized in 7 days SSF at 37°C, and the pectinase activities were daily measured by the method of Somogy-Nelson. The optimum pectinase production was 0.166 U/ml on the fourth day SSF. Purification using open column ion exchange chromatography DEAE cellulose DE-52 resulted in 1030.9 folds of pectinase purity with a yield of 25.9%. The enzyme was at optimal activity at pH six and attended stable in the pH range of 5.5-8, while optimal activity at a temperature of 50°C and was stable in the range of 30-45°C. The pectinase activity increased by 120% with the addition of 10 mM Mg2+, and 95% retained when 10 mM Ca2+ was added. The presence of 10 mM Na+, K+, and Fe2+ resulted in a slight effect of activity at 85%, 83%, and 78%. However, it was strongly inhibited by 10 mM Al3+ and retained 25%. Based on the results above, the microbial utilization of coffee pulp waste by ISH16 bacteria pectinolytic is one opportunity to produce valuable pectinase with low-cost production, so comprehensive examination in large-scale production is needed too. In this paper, all research detail steps were described

    The Potency of Indigenous Lactobacillus farciminis LIPI12-2-LAB033 Isolated from Non-Dairy Product of Indonesian Fermented Food as a New Source of β-galactosidase Enzyme

    Get PDF
    AbstractThe β-galactosidase is an enzyme that plays an essential role in the lactose hydrolysis into glucose and galactose. This study examines the potential of β-galactosidase from several lactic acid bacteria (LAB) isolated from non-dairy products Indonesian fermented foods and purifies them to increase their specific activity. The enzyme was extracted using ultrasonication, purified with ammonium sulfate, and dialyzed with a cellulose membrane (11 kDa). The result of isolates tests showed that Lactobacillus farciminis LIPI12-2-LAB033 had the highest specific activity of 13.9 U/mg protein. Precipitation using 40% ammonium sulfate increased the specific activity up to 19.6 U/mg protein. This enzyme works optimally at a temperature of 40 °C and pH of 7. The specific activity of this enzyme increases to 75.6 U/mg protein after dialysis. The dialysis process purifies the enzyme 5.44 times with a yield of 26.7%. These findings indicate that Lactobacillus farciminis LIPI12-2-LAB033 can be considered as a source of β-galactosidase enzyme production.Keywords: enzyme, β-galactosidase, Lactobacillus farciminis, indigenous, partial purification  Abstrakβ-galaktosidase merupakan enzim yang berperan penting dalam hidrolisis laktosa menjadi glukosa dan galaktosa. Penelitian ini mengkaji potensi β-galaktosidase dari beberapa bakteri asam laktat yang diisolasi dari makanan fermentasi Indonesia yang bukan produk turunan susu dan memurnikannya untuk meningkatkan aktivitas spesifiknya. Enzim diekstraksi dari sel menggunakan ultrasonikasi kemudian dimurnikan dengan amonium sulfat dan didialisis dengan membran selulosa (11 kDa). Hasil uji isolat menunjukkan bahwa Lactobacillus farciminis LIPI12-2-LAB033 memiliki aktivitas spesifik tertinggi sebesar 13.9 U/mg protein. Pengendapan menggunakan ammonium sulfat 40% meningkatkan aktivitas spesifiknya hingga 19.6 U/mg protein. Enzim ini bekerja optimal pada suhu 40 °C dan pH 7. Aktivitas spesifik enzim ini meningkat hingga 75.6 U/mg protein setelah proses dialisis. Proses dialisis memurnikan enzim menjadi 5.44 kali lipat dengan rendemen 26.7%. Temuan ini menunjukkan bahwa Lactobacillus farciminis LIPI12-2-LAB033 dapat dipertimbangkan sebagai sumber produksi enzim β-galaktosidase.Kata kunci: enzim, β-galaktosidase, Lactobacillus farciminis, indigenous, purifikasi sebagian

    Mitochondrial DNA haplogroup H as a risk factor for idiopathic dilated cardiomyopathy in Spanish population

    Get PDF
    [Abstract] Idiopathic dilated cardiomyopathy (IDC) is a structural heart disease with strong genetic background. The different single nucleotide polymorphisms (SNPs) that constitute mitochondrial haplogroups could play an important role in IDC progression. The aim of this study was to test frequencies of mitochondrial haplogroups in healthy controls (n = 422) and IDC patients (n = 304) of a Caucasian Spanish population. To achieve this, ten major European haplogroups were identified. Frequencies and Odds Ratios for the association between IDC and haplogroups were calculated in both groups. We found that compared to healthy controls, the prevalence of haplogroup H was significantly higher in IDC patients (40.0% vs 50.7%, p-value = 0.040).Instituto de Salud Carlos III; PS09/0084

    Recent discoveries in the cycling, growing and aging of the p53 field

    Get PDF
    The P53 gene and it product p53 protein is the most studied tumor suppressor, which was considered as oncogene for two decades until 1990. More than 60 thousand papers on the topic of p53 has been abstracted in Pubmed. What yet could be discovered about its role in cell death, growth arrest and apoptosis, as well as a mediator of the therapeutic effect of anticancer drugs. Still during recent few years even more amazing discoveries have been done. Here we review such topics as suppression of epigenetic silencing of a large number of non-coding RNAs, role of p53 in suppression of the senescence phenotype, inhibition of oncogenic metabolism, protection of normal cells from chemotherapy and even tumor suppression without apoptosis and cell cycle arrest
    corecore