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Abstract 

Idiopathic dilated cardiomyopathy (IDC) is a structural heart disease with strong genetic background. The 

different single nucleotide polymorphisms (SNPs) that constitute mitochondrial haplogroups could play an 

important role in IDC progression. The aim of this study was to test frequencies of mitochondrial haplogroups in 

healthy controls (n = 422) and IDC patients (n = 304) of a Caucasian Spanish population. To achieve this, ten 

major European haplogroups were identified. Frequencies and Odds Ratios for the association between IDC and 

haplogroups were calculated in both groups. We found that compared to healthy controls, the prevalence of 

haplogroup H was significantly higher in IDC patients (40.0% vs 50.7%, p-value = 0.040). 
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1. Introduction 

Dilated cardiomyopathy is a myocardial disorder characterized by dilation and dysfunction of the 

left ventricle. Between 20 and 48% of dilated cardiomyopathy cases are heritable (Baig et al., 1998; 

Mestroni et al., 1994 ;  Michels et al., 1992). However, dilated cardiomyopathy is also present in the 

absence of congenital, valvular, coronary artery disease or any systemic disease known to cause 

myocardial dysfunction. In this case the cardiomyopathy is defined as idiopathic dilated 

cardiomyopathy (IDC). Accumulating evidence has implicated the oxidative stress in the progression 

of IDC, but the molecular mechanisms are unknown. An increased concentration of reactive oxygen 

species (ROS) plays a key role in IDC promoting the apoptotic death of myocytes, endothelial cells 

and fibroblasts (Cesselli et al., 2001), and ultimately leads to myocyte hypertrophy and interstitial 

fibrosis (Kinugawa et al., 2000). The clinical consequence of oxidative stress is the reduction of 

contractile function in IDC patients (Burton et al., 1984 ;  Gupta and Singal, 1989). An in-depth 

understanding of its basic pathophysiologic mechanisms is necessary to provide early prognosis and 

better therapies for preventing and curing this disease. 

 

Human mitochondrial DNA (mtDNA) encodes 37 genes, but only 13 of these genes are 

transcripted into 13 polypeptides. They constitute essential subunits of the mitochondrial oxidative 

phosphorylation enzyme complexes, which provide the principal source of ATP (DiMauro and 

Schon, 2003 ;  Wallace, 2005). The function of mitochondrion-encoded proteins is affected by amino 

acid substitutions, but they can also be indirectly affected by mutations in mtDNA control regions. 

mtDNA mutations have accumulated throughout human history and they are present in groups of 

human populations: the mitochondrial haplogroups. Each mitochondrial haplogroup is defined as a 

collection of haplotypes characterized by specific single nucleotide polymorphisms (SNPs). SNPs are 

present in indigenous populations and this has been attributed to genetic drift and/or possible climate 

selection (Mishmar et al., 2003 ;  Ruiz-Pesini et al., 2004). 

 

The polymorphic variants are directly associated with the disease, but others could affect 

indirectly to its development. Pello et al. (2008) described specific SNPs involved in the assembly of 

components of the Electron Transport Chain (ETC). In fact, another study showed that mitochondrial 

haplogroups are associated with differences in the concentration of superoxide, and other reactive 

oxygen species produced by the ETC (Marcuello et al., 2009). The variation of oxidative stress levels 

in cells will ultimately have an effect in morbidity, mortality and longevity among individuals with 

different haplogroups (Cai et al., 2009 ;  Herrnstadt and Howell, 2004). 

 

Specific haplogroups may constitute either a risk or a protective factor in the origin of complex 

diseases or age-related diseases such as Parkinson's (van der Walt et al., 2003), Alzheimer's disease 

(Santoro et al., 2010 ;  van der Walt et al., 2004), osteoarthritis (Rego-Pérez et al., 2008 ;  Rego-

Pérez et al., 2010) and several cancers (Fang et al., 2010 ;  Li et al., 2011). Mitochondrial 

haplogroups have also been associated with an increased risk of developing various cardiovascular 

diseases. In particular, the haplogroup T is more frequent in hypertrophic cardiomyopathy patients 

(Castro et al., 2006). Furthermore, haplogroup H1 (Rosa et al., 2008), K (Chinnery et al., 2010) and 

the Asian haplogroup N9b (Nishigaki et al., 2007) are protective factors against ischemic stroke. In a 

previous study, we found haplogroups H and J to be risk and protective factors for ischemic 

cardiomyopathy development, respectively (Fernández-Caggiano et al., 2012). 

 

In this work, a case–control study was performed to assess the possible association of 

mitochondrial haplogroups in a Spanish population of 304 IDC patients and 422 controls. In addition, 

the frequencies of different SNPs that characterize the mitochondrial haplogroups were analyzed in 

order to determine whether any of them constitutes a risk factor for IDC development. 
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2. Methods 

2.1. Ethics statement 

The present study was conducted according to the Spanish Law for Biomedical Research (Law 

14/2007 — 3rd of July) and complied with the Declaration of Helsinki. The study and the use of 

archive samples for this project were approved by the Research Ethics Committee of Galicia. The 

DNA National Bank Institution which provided DNA samples received approval from their own 

ethical committee. Written informed consent was obtained from all individuals. All the samples were 

collected anonymously. 

2.2. Patients and controls 

DNA samples from 726 unrelated Caucasian Spanish individuals (422 healthy controls and 304 

IDC patients) were used in this study. The IDC group included 224 patients obtained from the A 

Coruña University Hospital Cardiology Unit and 80 provided by the DNA National Bank (University 

of Salamanca, Spain). The control group was an age and sex matched population of 422 donors from 

A Coruña University Hospital Blood Bank. Individuals in this group represented both genders and 

had no history of IDC. We included in the group of patients those who met all the criteria established 

by The American Heart Association clinical standards (Radford et al., 2005). These criteria included 

patients with heart failure and reduced systolic function with a dilatation of the ventricular chambers 

diagnosticated by 2-dimensional echocardiography. Patients did not have any previous evidence for 

myocardial infection neither reported familial cardiomyopathies. The ischemic origin was discarded 

if any of these conditions were present: 1) at least one major epicardial coronary artery with more 

than 70% obstruction by coronary angiography; 2) history of acute myocardial associated with wall 

motion abnormalities by echocardiography and 3) stress testing diagnostic of coronary artery disease. 

Clinical parameters about all the individuals were collected. Hypercholesterolemia was considered a 

risk if total cholesterol levels were ≥ 220 mg/dl. Body mass index was expressed as weight in 

kilograms divided by height in square meters. Hypertension was defined as systolic blood pressure 

≥ 140 mm Hg, diastolic blood pressure ≥ 90 mm Hg or by the use of antihypertensive medication. 

Smokers were defined as current smokers. Diabetes mellitus was defined as a self-reported disease, 

use of antidiabetic drugs, or a nonfasting plasma glucose ≥ 11 mmol/l. 

2.3. Assignment to mDNA haplogroups 

Haplogroup analysis was based on the use of single base extension (SBE) for the assessment of 

European mtDNA haplogroups. The SBE assay permitted us to identify six SNPs that determine the 

most frequent European haplogroups (H, T, K, U, J, V), while the less common haplogroups (W, I, 

X) were identified by polymerase chain reaction–restriction fragment length polymorphisms (PCR–

RFLPs). The samples obtained in this study were haplogroup-typed using a previously described 

assay (Fernández-Caggiano et al., 2012). Fragments containing the six analyzed SNPs were amplified 

using the twelve primers listed in Supplementary Table 1. 

2.4. Statistical methods 

Statistical analysis was performed using SPSS 17.0 software. The Chi-square test was used to 

assess haplogroups and allele frequencies between controls and patients. For the haplogroup analysis, 

each haplogroup was compared against all the other haplogroups pooled into a single group. The less 

frequent haplogroups I, W and X, which account for less than 10 controls/patients, were re-grouped 

based on common-ancestor criteria. The haplogroup HV was re-grouped as “others”. Odds Ratio 

(OR) and 95% Confidence Intervals (CI) were calculated for each haplogroup. Comparisons between 

haplogroups in IDC patients and controls were computed by applying the Bonferroni's adjustment. 

Thus, significant p-values obtained from Chi-square test were multiplied by the number of outcomes 

(k = 8 for mtDNA haplogroups and k = 4 for mtDNA clusters) tested and the differences were 

http://www.sciencedirect.com/science/article/pii/S1567724913000445#bb0195
http://www.sciencedirect.com/science/article/pii/S1567724913000445#bb0065


considered significant if, after the adjustment, p < 0.05 (2-tailed test). Haplogroup frequencies 

between controls in this study and in other European studies were also analyzed using the same tests. 

Binary logistic regression adjustment was used to test the influence of hypercholesterolemia, 

hypertension, diabetes mellitus and the smoking habit. Differences were considered significant at 

p < 0.05 (2-tailed test). 

3. Results 

3.1. Clinical parameters stratified by mitochondrial haplogroups 

A total of 726 Caucasian Spanish subjects were included in this study, 304 had been previously 

diagnosed with IDC (case group) and 422 were controls with no history of IDC. The subjects were 

selected to match sex and age of the patients' population. Considering the age variable influence we 

selected subjects of similar ages (66.33 ± 11.7 years) to the IDC group (59.5 ± 15.1 years) for the 

control group. This prevented the inclusion of young individuals predisposed to IDC in the control 

group. The lower proportion of women developing IDC was also taken into account and we selected 

our control group (22.0% of women) to have frequency similar to our case group (26.5% of women). 

Clinical parameters stratified by mitochondrial haplogroups are listed in Table 1. The distribution of 

haplogroups for the major IDC risk factors was no different between controls and patients. 

Table 1. Mitochondrial haplogroup frequencies (%) stratified by classical risk factors for IDC development. 

  
Hypercholesterolemia  Hypertension  Diabetes  Smoking habit 

  
C IDC  C IDC  C IDC  C IDC 

             

Haplogroups H 44 (36.7) 41 (37.6)  49 (40.2) 45 (40.2)  20 (35.7) 24 (39.3)  25 (48.1) 42 (47.2) 

U 22 (18.3) 20 (18.3)  14 (11.5) 18 (16.1)  6 (10.7) 7 (11.5)  10 (19.2) 18 (20.2) 

J 15 (12.5) 15 (13.8)  17 (13.9) 17 (15.2)  8 (14.3) 9 (14.8)  4 (7.7) 9 (10.1) 

T 13 (10.8) 10 (9.2)  16 (13.1) 12 (10.7)  6 (10.7) 6 (9.8)  4 (7.7) 5 (5.6) 

K 7 (5.8) 10 (9.2)  8 (6.6) 7 (6.2)  7 (12.5) 5 (8.2)  4 (7.7) 5 (5.6) 

V 2 (1.7) 1 (0.9)  3 (2.5) 3 (2.7)  2 (3.6) 2 (3.3)  2 (3.8) 2 (2.2) 

I WX 8 (6.7) 4 (3.7)  7 (5.7) 2 (1.8)  2 (3.6) 2 (3.3)  1 (1.9) 2 (2.2) 

O 9 (7.5) 8 (7.3)  8 (6.6) 8 (7.1)  5 (8.9) 6 (9.8)  2 (3.8) 6 (6.7) 

 
Total 120 109  122 112  56 61  52 89 

             

 
C. Controls. IDC. Idiopathic dilated cardiomyopathy patients. O. Others. No significant differences were found for the 

frequencies of major cardiovascular risk factors between controls and IDC patients stratified by mitochondrial haplogroups. 

3.2. Haplogroup H and cluster HV: risk factors for IDC development 

Samples were genotyped for the most common European descent mitochondrial haplogroups and 

the resulting frequencies are shown in Table 2. The obtained frequencies ranged from 50.7% for the 

most common haplogroup H, to 1.6% for the less prevalent haplogroup V. Using the rapid and 

effective multiplex SBE assay, 92.5% of the samples were assigned to the most common European 

mtDNA haplogroups (H, U, J, K, T, V and HV). The less frequent haplogroups (X, I, W) accounted 

for 3.6% of the samples and were assigned using the conventional PCR–RFLP assay. The haplogroup 

frequencies for our control group did not differ substantially from those reported in previous studies 

that analyzed different European populations (Supplementary Table 2) (Kofler et al., 2009; Mancuso 

et al., 2004 ;  Torroni et al., 1996). 
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OR. Odds Ratio. 95% CI. Confidence Intervals. IDC. Idiopathic dilated cardiomyopathy patients. 
a Bonferroni corrected p-value. The significant p-values obtained in the Chi-squared test were multiplied by the number of 
outcomes (k = 8 for mtDNA haplogroups and k = 4 for mtDNA clusters) tested. Significant differences (p-value < 0.05) are 

indicated in bold. 

 

The haplogroup H was significantly overrepresented in IDC patients (OR = 1.54 [95% CI = 1.14–

2.07], p = 0.040) when each haplogroup was compared against all the rest pooled together (Table 2). 

These results indicate that haplogroup H constitutes a risk factor for IDC in our study population. 

 

Because the haplogroups analyzed share a common ancestry and several SNPs have been 

conserved during evolution, we examined the frequencies of clusters HV, JT, KU and IWX. Cluster 

HV was found to be a risk factor for IDC (OR = 1.50 [95% CI = 1.11–2.01], p = 0.030) (Table 2). 

 

Hypercholesterolemia, hypertension, diabetes and smoking habit were significantly and 

independently associated with IDC after the multivariate logistic regression analysis (Table 3). Our 

results supported previous studies showing that IDC development was associated with 

hypercholesterolemia (OR = 1.51 CI = [1.08–2.11], p < 0.05), hypertension (OR = 1.40 CI = [1.00–

1.95], p < 0.05), diabetes (OR = 1.83 CI = [1.20–2.78], p < 0.05) and cigarette smoking (OR = 3.11 

CI = [2.09–4.61], p < 0.001). The haplogroup H continued to be a risk factor compared with 

haplogroup U (OR = 0.62 CI = [0.39–0.98], p < 0.05), haplogroup V (OR = 0.25 CI = [0.07–0.92], 

p < 0.05) and the cluster IWX (OR = 0.31 CI = [0.12–0.81], p < 0.05) (Table 3). These results 

support the idea that patients with IDC are overrepresented by haplogroup H compared with the 

haplogroups U and V and the cluster IWX. 

  

Table 2. Frequencies and OR of mitochondrial haplogroups and clusters in controls and patients with IDC. 

  

No. of individuals (%) Total OR [95% CI] p-Value 

Control (n = 422) IDC patients (n = 304) 
   

       

Haplogroups 

H 169 (40.0) 154 (50.7) 323 (44.5) 1.54 [1.14–2.07] 0.040a 

U 73 (17.3) 45 (14.8) 118 (16.3) 0.83 [0.55–1.24] 0.415 

J 47 (11.1) 31 (10.2) 78 (10.7) 0.91 [0.56–1.46] 0.717 

T 47 (11.1) 28 (9.2) 75 (10.3) 0.81 [0.49–1.32] 0.459 

K 28 (6.6) 20 (6.6) 48 (6.6) 0.99 [0.55–1.79] 1.000 

V 13 (3.1) 5 (1.6) 18 (2.5) 0.52 [0.19–1.49] 0.239 

I WX 20 (4.7) 6 (2.0) 26 (3.6) 0.40 [0.16–1.02] 0.067 

OTHERS 25 (5.9) 15 (4.9) 40 (5.6) 0.82 [0.43–1.59] 0.623 

Clusters 

HV 188 (44.5) 166 (54.6) 354 (48.8) 1.50 [1.11–2.01] 0.030a 

JT 94 (22.3) 59 (19.4) 153 (21.1) 0.84 [0.58–1.21] 0.358 

KU 101 (23.9) 65 (21.4) 166 (22.9) 0.86 [0.61–1.23] 0.422 

I WX 20 (4.7) 6 (2.0) 26 (3.6) 0.40 [0.16–1.02] 0.067 
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Table 3. Multivariate analysis of the study groups. 

 
B SEM OR [95% CI] p-Value 

     

Hypercholesterolemia 0.411 0.172 1.51 [1.08–2.11] 0.017 

Hypertension 0.334 0.169 1.40 [1.00–1.95] 0.048 

Diabetes 0.604 0.213 1.83 [1.20–2.78] 0.005 

Smoking habit 1.133 0.202 3.11 [2.09–4.61] 0.001 

Haplogroup H – – 1 – 

Haplogroup U − 0.476 0.230 0.62 [0.39–0.98] 0.039 

Haplogroup J − 0.449 0.270 0.64 [0.38–1.08] 0.097 

Haplogroup T − 0.411 0.271 0.66 [0.39–1.13] 0.130 

Haplogroup K − 0.357 0.327 0.70 [0.37–1.33] 0.274 

Haplogroup V − 1.400 0.674 0.25 [0.07–0.92] 0.038 

Haplogroup IWX − 1.178 0.491 0.31 [0.12–0.81] 0.016 

Others − 0.638 0.361 0.53 [0.26–1.07] 0.077 

     

 
B. Regression coefficient. SEM. Standard error of the mean. OR. Odds Ratio. 95% CI. Confidence Intervals. 

Significant differences (p-value < 0.05) are indicated in bold. 

3.3. mtDNA alleles m.7028C and m.14766C were risk factors for IDC 

The frequencies for eight SNPs characteristic of European mtDNA haplogroups were also 

analyzed. Two phylogenetically associated SNPs were found overrepresented in IDC patients: the 

SNP m.7028C>T, which characterizes haplogroup H (OR = 1.54 [95% CI = 1.14–2.07], p = 0.005) 

and SNP m.14766C>T (OR = 1.48 [95% CI = 1.10–1.99], p = 0.010), which is associated with cluster 

HV (Table 4). Although the SNP m.7028C>T does not produce an amino acid change in p.MT-CO1, 

the nucleotide change in 14766 locus produces a non-synonymous amino acid change in cytochrome 

b (p.Thr7Ile). 

  

http://www.sciencedirect.com/science/article/pii/S1567724913000445#t0020


Table 4. Polymorphisms relative to the revised Cambridge reference sequence found in each nucleotide position analyzed. 

Nt position Locus Nt change Amino acid change No. of individuals (%) OR [95% CI] p-Value 

    
Controls IDC patients 

  

        

7028 Cytochrome c oxidase subunit 1 C>T Syn 169 (40.0) 154 (50.7) 
1.54  

[1.14–2.07] 
0.005 

14766 Cytochrome b C>T p.Thr7Ile 188 (44.5) 165 (54.3) 
1.48  

[1.10–1.99] 
0.010 

10398 NADH dehydrogenase subunit 3 A>G p.Thr114Ala 97 (23.0) 62 (20.4) 
0.86  
[0.60–1.23] 

0.415 

4580 NADH dehydrogenase subunit 2 G>A Syn 14 (3.3) 5 (1.6) 
0.49  

[0.17–1.37] 
0.238 

12308 tRNA leucine 2 A>G Syn 101 (23.9) 65 (21.4) 
0.86  

[0.61–1.23] 
0.422 

4216 NADH dehydrogenase subunit 1 T>C p.Tyr304His 94 (22.3) 59 (19.4) 
0.84  
[0.58–1.21] 

0.358 

10034 tRNA glycine T>C Syn 3 (0.7) 3 (1.0) 
1.39  

[0.28–6.94] 
1.000 

14470 NADH dehydrogenase subunit 6 T>C Syn 16 (3.8) 4 (1.3) 
0.34  

[0.11–1.02] 
0.064 

        

 
Nt position. Nucleotide position. Nt change. Nucleotide change. Syn. Synonymous. OR. Odds Ratio. 95% CI. Confidence 

Intervals. IDC. Idiopathic dilated cardiomyopathy. Significant differences (p-value < 0.05) are indicated in bold. 

4. Discussion 

We found significant association of mitochondrial haplogroup H and the incidence of idiopathic 

dilated cardiomyopathy in our Spanish population. To the best of our knowledge, this is the first time 

that haplogroup H was found as a risk factor for IDC. 

 

To this date, IDC cannot be associated to single gene defects. While a few common susceptibility 

alleles for IDC have been identified from candidate-gene approaches, they have not been confirmed 

yet in replicative populations (Rampersaud et al., 2010), which is a common problem of single gene 

based analyses. 

 

Because cardiac tissue has high-energy requirements, mitochondrial mutations have been 

hypothesized to contribute to IDC development. Although to identify which mtDNA mutations 

actually cause IDC is a challenge yet, some mtDNA mutations have been reported in IDC (Li et al., 

1997; Mahjoub et al., 2007; Marin-Garcia et al., 2000 ;  Santorelli et al., 1999). However, we did not 

report any risk association between analyzed SNPs in our work and those considered as possibly 

relevant for the dilated cardiomyopathy pathogenesis in these studies. 

 

Gallardo et al. (2012) described haplogroup H as a risk factor for the progression to end-stage 

heart failure in a Spanish population. In agreement with our study, they observed that the frequency 

of haplogroup H in 148 patients with idiopathic dilated cardiomyopathy was 51.4% when they 

divided the allograft recipients according to etiology. However, in this study it was not possible to 

confirm in a statistical way the haplogroup H as a risk factor for idiopathic dilated cardiomyopathy. 

This was probably due to the low number of patients with this disease included in the study (n = 148). 

Our data from 304 patients supported in a statistical way the haplogroup H as a risk factor for 

idiopathic dilated cardiomyopathy. A recent study showed mitochondrial haplogroup H as a risk 

factor for early onset myocardial infarction (Palacín et al., 2011). Conversely, Rosa et al. (2008) 

reported sub-haplogroup H1 to be a protective factor for ischemic stroke. Therefore, the difference in 

the phenotype could be due to other polymorphisms present in sub-haplogroup H1. Taken together, 

these studies suggest that no single specific SNP is responsible for the risk effect; instead it is due to a 
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particular set of polymorphisms within haplogroup H. Although distribution in our control population 

did not differ from those in other European studies (Kofler et al., 2009; Mancuso et al., 2004; Palacín 

et al., 2011 ;  Torroni et al., 1996), an exhaustive work carried by Benn et al. (2008) in a Danish 

population found no differences between mitochondrial haplogroups and risk for myocardial 

infarction or ischemic stroke. Therefore, our Spanish population cannot be directly extrapolated to 

other Northern European populations. The differing results between studies could be explained by 

geographic specificity for some mtDNA SNPs and clades. 

 

There are many SNPs that characterize haplogroup H. In this study we analyzed those which 

permitted us to classify the different European mitochondrial haplogroups. Among them, the allele 

m.7028C was found overrepresented in our study. However, the SNP m.7028C>T causes a 

synonymous amino acid change, and therefore this SNP is not responsible for the phenotypic effect 

that defines haplogroup H as a risk factor for IDC development. On the other hand, the m.14766C 

allele constituted a risk factor for the IDC development in our Spanish population. The SNP 

m.14766C>T causes the amino acid substitution of a threonine for an isoleucine at site 7 in 

cytochrome b. A computational approach accomplished by Beckstead et al. (2009) indicated the 

possibility that the region around cytochrome site 7 becomes more open, less globular and less 

compact due to the presence of a threonine. This could affect the efficiency of the ETC., which is 

expected to be higher in haplogroup H cells. Accordingly, results emerging from different studies 

have provided insights concerning different energy efficiency between haplogroups. Haplogroup H 

has higher oxygen consumption than haplogroup J for example (Marcuello et al., 2009 ;  Martínez-

Redondo et al., 2009), which is associated with higher efficiency in the electronic respiratory chain 

and low ATP and ROS production. Consequently, cells with mitochondrial haplogroup H undergo 

more mitochondrial oxidative damage. Since the heart has the highest oxygen uptake rate in body, we 

speculate that minor differences in energy efficiency might lead to major physiological effects. 

It is well known that oxidative stress is increased in patients with dilated cardiomyopathy or acute 

myocardial infarction (Hill and Singal, 1996). On the subcellular level, the reactive oxygen species 

attack biomolecules such as contractile proteins (Canton et al., 2011 ;  Kaneko et al., 1994) or ion 

channels (Liu et al., 2010). Additionally, the change of intracellular redox balance may lead to 

activation of stress sensitive signaling pathways. Several reports showed evidence of increased 

oxidative stress in dilated cardiomyopathy patients (Cesselli et al., 2001; Kato et al., 2010; Shah et 

al., 2011; Yücel et al., 1998 ;  Yücel et al., 2002). Furthermore, it has been demonstrated that under 

experimental conditions therapy with antioxidant drugs is able to arrest the development of this 

disease (Cappola et al., 2001; Kawakami et al., 2009 ;  Nishioka et al., 2007). This provides further 

evidence for a significant role of reactive oxygen species in IDC development. From our results, we 

suggest that individuals with haplogroup H might have a slight impaired intracellular redox balance 

that possibly influences IDC development. 

 

A complete understanding of the genetic basis of IDC has not been achieved based on currently 

available data. Most recent efforts have been devoted to IDC gene discovery or to preliminary studies 

of mutation frequency in modest sized IDC cohorts. Besides, it must be taken into account that other 

factors are involved on the IDC development. Mitochondrial haplogroups may act synergistically 

with proteins and environmental components present in the cell. Although this work showed 

significant results, a limitation of the present study is the lack of a replication study in another 

population. A replica of our study is quite demanding, due to difficulties in enrolling another 

comparable large number of patients. Nevertheless, IDC patients and controls have been recruited in 

a relatively large geographic area thus avoiding possible bias related to founder effect or population 

heterogeneity. We believe that additional studies similar to the present one, will allow in the future 

meta-analyses assessing actual risk scores and equations for the different mitochondrial haplogroups 

in the development of IDC. 
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5. Conclusion 

Our results show suggestive evidence for the association of mitochondrial haplogroup H as risk 

factor for idiopathic dilated cardiomyopathy development in a Caucasian Spanish population. Further 

analysis of the full sequenced mtDNA in these haplogroups and their phenotypic analysis might yield 

additional insights towards therapeutic targets for IDC pathogenesis. 
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