6 research outputs found

    To breed or not to breed: Endocrine response to mercury contamination by an Arctic seabird

    Get PDF
    Mercury, a ubiquitous toxic element, is known to alter expression of sex steroids and to impair reproduction across vertebrates but the mechanisms underlying these effects are not clearly identified. We examined whether contamination by mercury predicts the probability to skip reproduction in black-legged kittiwakes (Rissa tridactyla) from Svalbard. We also manipulated the endocrine system to investigate the mechanism underlying this relationship. During the pre-laying period, we injected exogenous GnRH (gonadotropin-releasing hormone) to test the ability of the pituitary to release luteinizing hormone (LH, a key hormone for the release of sex steroids and hence breeding) in relation to mercury burden. Birds that skipped reproduction had significantly higher mercury concentration in blood than breeders. Endocrine profiles of these birds also varied based on breeding status (breeders versus non-breeders), mercury contamination and sex. Specifically, in skippers (birds that did not breed), baseline LH decreased with increasing mercury concentration in males, whereas it increased in females. GnRH-induced LH levels increased with increasing mercury concentration in both sexes. These results suggest that mercury contamination may disrupt GnRH input to the pituitary. Thus, high mercury concentration could affect the ability of long-lived birds to modulate their reproductive effort (skipping or breeding) according to ongoing environmental changes in the Arctic, thereby impacting population dynamics

    Data from: To breed or not to breed: endocrine response to mercury contamination by an Arctic seabird

    No full text
    Mercury, a ubiquitous toxic element, is known to alter expression of sex steroids and to impair reproduction across vertebrates but the mechanisms underlying these effects are not clearly identified. We examined whether contamination by mercury predicts the probability to skip reproduction in black-legged kittiwakes (Rissa tridactyla) from Svalbard. We also manipulated the endocrine system to investigate the mechanism underlying this relationship. During the pre-laying period, we injected exogenous GnRH (gonadotropin-releasing hormone) to test the ability of the pituitary to release luteinizing hormone (LH, a key hormone for the release of sex steroids and hence breeding) in relation to mercury burden. Birds that skipped reproduction had significantly higher mercury concentration in blood than breeders. Endocrine profiles of these birds also varied based on breeding status (breeders versus non-breeders), mercury contamination and sex. Specifically, in skippers (birds that did not breed), baseline LH decreased with increasing mercury concentration in males, whereas it increased in females. GnRH-induced LH levels increased with increasing mercury concentration in both sexes. These results suggest that mercury contamination may disrupt GnRH input to the pituitary. Thus, high mercury concentration could affect the ability of long-lived birds to modulate their reproductive effort (skipping or breeding) according to ongoing environmental changes in the Arctic, thereby impacting population dynamics

    Survival rate and breeding outputs in a high Arctic seabird exposed to legacy persistent organic pollutants and mercury

    Get PDF
    International audienceChronic exposure to pollutants may represent a threat for wildlife. We tested whether adult survival rate, breeding probability and breeding success the year of sampling and the following year were affected by blood levels of mercury or persistent organic pollutants in Svalbard black-legged kittiwake Rissa tridactyla, by using capture–mark–recapture models over a five-year period. Survival rate was negatively linked to HCB levels in females, to chlordane mixture and oxychlordane, tended to decrease with increasing PCBs or DDE levels, but was unrelated to mercury. Breeding probability decreased with increasing mercury levels during the sampling year and with increasing CHL or HCB levels during the following year, especially in males observed as breeders. Surprisingly, the probability of raising two chicks increased with increasing HCB levels. Although levels of these legacy pollutants are expected to decline, they represent a potential threat for adult survival rate and breeding probability, possibly affecting kittiwake population dynamics
    corecore