31 research outputs found

    Association of Genetic Variation with Keratoconus

    Get PDF
    Importance: Keratoconus is a condition in which the cornea progressively thins and protrudes in a conical shape, severely affecting refraction and vision. It is a major indication for corneal transplant. To discover new genetic loci associated with keratoconus and better understand the causative mechanism of this disease, we performed a genome-wide association study on patients with keratoconus.Objective: To identify genetic susceptibility regions for keratoconus in the human genome.Design, Setting, and Participants: This study was conducted with data from eye clinics in Australia, the United States, and Northern Ireland. The discovery cohort of individuals with keratoconus and control participants from Australia was genotyped using the Illumina HumanCoreExome single-nucleotide polymorphism array. After quality control and data cleaning, genotypes were imputed against the 1000 Genomes Project reference panel (phase III; version 5), and association analyses were completed using PLINK version 1.90. Single-nucleotide polymorphisms with P -6 were assessed for replication in 3 additional cohorts. Control participants were drawn from the cohorts of the Blue Mountains Eye Study and a previous study of glaucoma. Replication cohorts were from a previous keratoconus genome-wide association study data set from the United States, a cohort of affected and control participants from Australia and Northern Ireland, and a case-control cohort from Victoria, Australia. Data were collected from January 2006 to March 2019.Main Outcomes and Measures: Associations between keratoconus and 6 252 612 genetic variants were estimated using logistic regression after adjusting for ancestry using the first 3 principal components.Results: The discovery cohort included 522 affected individuals and 655 control participants, while the replication cohorts included 818 affected individuals (222 from the United States, 331 from Australia and Northern Ireland, and 265 from Victoria, Australia) and 3858 control participants (2927 from the United States, 229 from Australia and Northern Ireland, and 702 from Victoria, Australia). Two novel loci reached genome-wide significance (defined as P -8), with a P value of 7.46 × 10-9 at rs61876744 in patatin-like phospholipase domain-containing 2 gene (PNPLA2) on chromosome 11 and a P value of 6.35 × 10-12 at rs138380, 2.2 kb upstream of casein kinase I isoform epsilon gene (CSNK1E) on chromosome 22. One additional locus was identified with a P value less than 1.00 × 10-6 in mastermind-like transcriptional coactivator 2 (MAML2) on chromosome 11 (P = 3.91 × 10-7). The novel locus in PNPLA2 reached genome-wide significance in an analysis of all 4 cohorts (P = 2.45 × 10-8).Conclusions and Relevance: In this relatively large keratoconus genome-wide association study, we identified a genome-wide significant locus for keratoconus in the region of PNPLA2 on chromosome 11

    PPIP5K2 and PCSK1 are Candidate Genetic Contributors to Familial Keratoconus

    Get PDF
    Keratoconus (KC) is the most common corneal ectatic disorder affecting >300,000 people in the US. KC normally has its onset in adolescence, progressively worsening through the third to fourth decades of life. KC patients report significant impaired vision-related quality of life. Genetic factors play an important role in KC pathogenesis. To identify novel genes in familial KC patients, we performed whole exome and genome sequencing in a four-generation family. We identified potential variants in the PPIP5K2 and PCSK1 genes. Using in vitro cellular model and in vivo gene-trap mouse model, we found critical evidence to support the role of PPIP5K2 in normal corneal function and KC pathogenesis. The gene-trap mouse showed irregular corneal surfaces and pathological corneal thinning resembling KC. For the first time, we have integrated corneal tomography and pachymetry mapping into characterization of mouse corneal phenotypes which could be widely implemented in basic and translational research for KC diagnosis and therapy in the future

    Author Correction: Cross-ancestry genome-wide association analysis of corneal thickness strengthens link between complex and Mendelian eye diseases.

    Get PDF
    Emmanuelle Souzeau, who contributed to analysis of data, was inadvertently omitted from the author list in the originally published version of this Article. This has now been corrected in both the PDF and HTML versions of the Article

    A multi-ethnic genome-wide association study implicates collagen matrix integrity and cell differentiation pathways in keratoconus

    Get PDF
    Keratoconus is characterised by reduced rigidity of the cornea with distortion and focal thinning that causes blurred vision, however, the pathogenetic mechanisms are unknown. It can lead to severe visual morbidity in children and young adults and is a common indication for corneal transplantation worldwide. Here we report the first large scale genome-wide association study of keratoconus including 4,669 cases and 116,547 controls. We have identified significant association with 36 genomic loci that, for the first time, implicate both dysregulation of corneal collagen matrix integrity and cell differentiation pathways as primary disease-causing mechanisms. The results also suggest pleiotropy, with some disease mechanisms shared with other corneal diseases, such as Fuchs endothelial corneal dystrophy. The common variants associated with keratoconus explain 12.5% of the genetic variance, which shows potential for the future development of a diagnostic test to detect susceptibility to disease

    Cross-ancestry genome-wide association analysis of corneal thickness strengthens link between complex and Mendelian eye diseases

    Get PDF
    Central corneal thickness (CCT) is a highly heritable trait associated with complex eye diseases such as keratoconus and glaucoma. We perform a genome-wide association meta-analysis of CCT and identify 19 novel regions. In addition to adding support for known connective tissue-related pathways, pathway analyses uncover previously unreported gene sets. Remarkably, >20% of the CCT-loci are near or within Mendelian disorder genes. These included FBN1, ADAMTS2 and TGFB2 which associate with connective tissue disorders (Marfan, Ehlers-Danlos and Loeys-Dietz syndromes), and the LUM-DCN-KERA gene complex involved in myopia, corneal dystrophies and cornea plana. Using index CCT-increasing variants, we find a significant inverse correlation in effect sizes between CCT and keratoconus (r =-0.62, P = 5.30 × 10-5) but not between CCT and primary open-angle glaucoma (r =-0.17, P = 0.2). Our findings provide evidence for shared genetic influences between CCT and keratoconus, and implicate candidate genes acting in collagen and extracellular matrix regulation

    Cross-ancestry genome-wide association analysis of corneal thickness strengthens link between complex and Mendelian eye diseases.

    Get PDF
    Central corneal thickness (CCT) is a highly heritable trait associated with complex eye diseases such as keratoconus and glaucoma. We perform a genome-wide association meta-analysis of CCT and identify 19 novel regions. In addition to adding support for known connective tissue-related pathways, pathway analyses uncover previously unreported gene sets. Remarkably, >20% of the CCT-loci are near or within Mendelian disorder genes. These included FBN1, ADAMTS2 and TGFB2 which associate with connective tissue disorders (Marfan, Ehlers-Danlos and Loeys-Dietz syndromes), and the LUM-DCN-KERA gene complex involved in myopia, corneal dystrophies and cornea plana. Using index CCT-increasing variants, we find a significant inverse correlation in effect sizes between CCT and keratoconus (r = -0.62, P = 5.30 × 10-5) but not between CCT and primary open-angle glaucoma (r = -0.17, P = 0.2). Our findings provide evidence for shared genetic influences between CCT and keratoconus, and implicate candidate genes acting in collagen and extracellular matrix regulation

    Missense Mutation in Pseudouridine Synthase 1 (PUS1) Causes Mitochondrial Myopathy and Sideroblastic Anemia (MLASA)

    No full text
    Mitochondrial myopathy and sideroblastic anemia (MLASA) is a rare, autosomal recessive oxidative phosphorylation disorder specific to skeletal muscle and bone marrow. Linkage analysis and homozygosity testing of two families with MLASA localized the candidate region to 1.2 Mb on 12q24.33. Sequence analysis of each of the six known genes in this region, as well as four putative genes with expression in bone marrow or muscle, identified a homozygous missense mutation in the pseudouridine synthase 1 gene (PUS1) in all patients with MLASA from these families. The mutation is the only amino acid coding change in these 10 genes that is not a known polymorphism, and it is not found in 934 controls. The amino acid change affects a highly conserved amino acid, and appears to be in the catalytic center of the protein, PUS1p. PUS1 is widely expressed, and quantitative expression analysis of RNAs from liver, brain, heart, bone marrow, and skeletal muscle showed elevated levels of expression in skeletal muscle and brain. We propose deficient pseudouridylation of mitochondrial tRNAs as an etiology of MLASA. Identification of the pathophysiologic pathways of the mutation in these families may shed light on the tissue specificity of oxidative phosphorylation disorders
    corecore