5,553 research outputs found

    Toward an understanding of optimal development environments within elite English soccer academies

    Get PDF
    This study examined the factors perceived by successful coaches to underpin optimal development environments within elite English soccer academies. A semistructured interview guide was developed to interview 10 expert coaches about the environments they create for players at a key stage in their development. The interviews were transcribed verbatim and inductively content analyzed. The results identified a wide range of factors resulting in a conceptual framework that explained how these factors interact to underpin an optimal environment. Subcomponents of this framework included organizational core (e.g., advocate a player-driven ideology), adaptability (e.g., embrace novel ideas & approaches), player welfare (e.g., understand players' world-view), key stakeholder relationships (e.g., build trust with parents), involvement (e.g., encourage players' ideas/feedback), and achievement oriented (e.g., establish an explicit pathway to senior level). Collectively, the findings highlight the importance of establishing strong, dynamic, organizational cultures at elite youth soccer academies. Ways that academies might be helped to establish such environments are discussed

    XMM-Newton observations of the first unidentified TeV gamma-ray source TeV J2032+4130

    Full text link
    (abridged) The first unidentified very high energy gamma ray source (TeV J2032+4130) in the Cygnus region has been the subject of intensive search for a counterpart source at other wavelengths. A deep (50\approx 50 ksec) exposure of TeV J2032+4130 with \textit{XMM-Newton} has been obtained. The contribution of point sources to the observed X-ray emission from TeV J2032+4130 is subtracted from the data. The point-source subtracted X-ray data are analyzed using blank sky exposures and regions adjacent to the position of TeV J2032+4130 in the field of view covered by the XMM-Newton telescopes to search for diffuse X-ray emission. An extended X-ray emission region with a full width half maximum (FWHM) size of 12\approx 12 arc min is found. The centroid of the emission is co-located with the position of TeV J2032+4130.The energy spectrum of the emission coinciding with the position and extension of TeV J2032+4130 can be modeled by a power-law model with a photon index Γ=1.5±0.2stat±0.3sys\Gamma=1.5\pm0.2_\mathrm{stat}\pm0.3_\mathrm{sys} and an energy flux integrated between 2 and 10 keV of f210keV71013f_{2-10 \mathrm{keV}} \approx 7\cdot 10^{-13} ergs/(cm2^2 s) which is lower than the very high energy gamma-ray flux observed from TeV J2032+4130. We conclude that the faint extended X-ray emission discovered in this observation is the X-ray counterpart of TeV J2032+4130. Formally, it can not be excluded that the extended emission is due to an unrelated population of faint, hot (kBT10k_BT\approx 10 keV) unresolved point-sources which by chance coincides with the position and extension of TeV J2032+4130. We discuss our findings in the frame of both hadronic and leptonic gamma-ray production scenarios.Comment: 5 Pages, 3 Figures, accepted for publication in A&

    Deeper Chandra Follow-up of Cygnus TeV Source Perpetuates Mystery

    Get PDF
    A 50 ksec Chandra observation of the unidentified TeV source in Cygnus reported by the HEGRA collaboration reveals no obvious diffuse X-ray counterpart. However, 240 Pointlike X-ray sources are detected within or nearby the extended TeV J2032+4130 source region, of which at least 36 are massive stars and 2 may be radio emitters. That the HEGRA source is a composite, having as counterpart the multiple point-like X-ray sources we observe, cannot be ruled out. Indeed, the distribution of point-like X-ray sources appears non-uniform and concentrated broadly within the extent of the TeV source region. We offer a hypothesis for the origin of the very high energy gamma-ray emission in Cyg OB2 based on the local acceleration of TeV range cosmic rays and the differential distribution of OB vs. less massive stars in this association.Comment: Substantially revised version; incorporates referee suggestions & expanded discussio

    Chandra X-ray Observatory Arcsecond Imaging of the Young, Oxygen-rich Supernova Remnant 1E0102.2-7219

    Get PDF
    We present observations of the young, Oxygen-rich supernova remnant 1E0102.2-7219 taken by the Chandra X-ray Observatory during Chandra's Orbital Activation and Checkout phase. The boundary of the blast wave shock is clearly seen for the first time, allowing the diameter of the remnant and the mean blast wave velocity to be determined accurately. The prominent X-ray bright ring of material may be the result of the reverse shock encountering ejecta; the radial variation of O VII vs. O VIII emission indicates an ionizing shock propagating inwards, possibly through a strong density gradient in the ejecta. We compare the X-ray emission to Australia Telescope Compact Array 6 cm radio observations (Amy and Ball) and to archival Hubble Space Telescope [O III] observations. The ring of radio emission is predominantly inward of the outer blast wave, consistent with an interpretation as synchrotron radiation originating behind the blast wave, but outward of the bright X-ray ring of emission. Many (but not all) of the prominent optical filaments are seen to correspond to X-ray bright regions. We obtain an upper limit of ~9e33 erg/s (3 sigma) on any potential pulsar X-ray emission from the central region.Comment: Accepted for pulication in Ap. J. Letters. 4 pages, 6 figures (one color figure). Formatted with emulateapj5. Revised to incorporate copyediting changes. High-resolution postscript (3.02MB) and tiff versions of the color figure are available from http://chandra.harvard.edu/photo/cycle1/0015multi/index.htm

    Discrete breathers in a two-dimensional hexagonal Fermi-Pasta-Ulam lattice

    Get PDF
    We consider a two-dimensional Fermi-Pasta-Ulam (FPU) lattice with hexagonal symmetry. Using asymptotic methods based on small amplitude ansatz, at third order we obtain a reduction to a cubic nonlinear Schrodinger equation (NLS) for the breather envelope. However, this does not support stable soliton solutions, so we pursue a higher-order analysis yielding a generalised NLS, which includes known stabilising terms. We present numerical results which suggest that long-lived stationary and moving breathers are supported by the lattice. We find breather solutions which move in an arbitrary direction, an ellipticity criterion for the wavenumbers of the carrier wave, asymptotic estimates for the breather energy, and a minimum threshold energy below which breathers cannot be found. This energy threshold is maximised for stationary breathers, and becomes vanishingly small near the boundary of the elliptic domain where breathers attain a maximum speed. Several of the results obtained are similar to those obtained for the square FPU lattice (Butt & Wattis, J Phys A, 39, 4955, (2006)), though we find that the square and hexagonal lattices exhibit different properties in regard to the generation of harmonics, and the isotropy of the generalised NLS equation.Comment: 29 pages, 14 Figure

    Evidence for moving breathers in a layered crystal insulator at 300K

    Full text link
    We report the ejection of atoms at a crystal surface caused by energetic breathers which have travelled more than 10^7 unit cells in atomic chain directions. The breathers were created by bombardment of a crystal face with heavy ions. This effect was observed at 300K in the layered crystal muscovite, which has linear chains of atoms for which the surrounding lattice has C_2 symmetry. The experimental techniques described could be used to study breathers in other materials and configurations.Comment: 7 pages, 3 figure

    Discrete breathers in honeycomb Fermi-Pasta-Ulam lattices

    Get PDF
    We consider the two-dimensional Fermi-Pasta-Ulam lattice with hexagonal honeycomb symmetry, which is a Hamiltonian system describing the evolution of a scalar-valued quantity subject to nearest neighbour interactions. Using multiple-scale analysis we reduce the governing lattice equations to a nonlinear Schrodinger (NLS) equation coupled to a second equation for an accompanying slow mode. Two cases in which the latter equation can be solved and so the system decoupled are considered in more detail: firstly, in the case of a symmetric potential, we derive the form of moving breathers. We find an ellipticity criterion for the wavenumbers of the carrier wave, together with asymptotic estimates for the breather energy. The minimum energy threshold depends on the wavenumber of the breather. We find that this threshold is locally maximised by stationary breathers. Secondly, for an asymmetric potential we find stationary breathers, which, even with a quadratic nonlinearity generate no second harmonic component in the breather. Plots of all our findings show clear hexagonal symmetry as we would expect from our lattice structure. Finally, we compare the properties of stationary breathers in the square, triangular and honeycomb lattices

    Hybrid Orthorhombic Carbon Flakes Intercalated with Bimetallic Au-Ag Nanoclusters: Influence of Synthesis Parameters on Optical Properties

    No full text
    Until recently, planar carbonaceous structures such as graphene did not show any birefringence under normal incidence. In contrast, a recently reported novel orthorhombic carbonaceous structure with metal nanoparticle inclusions does show intrinsic birefringence, outperforming other natural orthorhombic crystalline materials. These flake-like structures self-assemble during a laser-induced growth process. In this article, we explore the potential of this novel material and the design freedom during production. We study in particular the dependence of the optical and geometrical properties of these hybrid carbon-metal flakes on the fabrication parameters. The influence of the laser irradiation time, concentration of the supramolecular complex in the solution, and an external electric field applied during the growth process are investigated. In all cases, the self-assembled metamaterial exhibits a strong linear birefringence in the visible spectral range, while the wavelength-dependent attenuation was found to hinge on the concentration of the supramolecular complex in the solution. By varying the fabrication parameters one can steer the shape and size of the flakes. This study provides a route towards fabrication of novel hybrid carbon-metal flakes with tailored optical and geometrical properties

    The Challenges of Living with and Caring for a Child or Children Affected by Neuronal Ceroid Lipofuscinosis Type 2 Disease: In-Depth Family Surveys in the United Kingdom and Germany

    Get PDF
    Limited research has investigated the challenges faced by families caring for children with neuronal ceroid lipofuscinosis type 2 (CLN2) disease. Face-to-face, mixed-method, in-depth surveys were conducted with 19 families (23 children) in the UK (n=9) and Germany (n=10) to assess the impact of caring for children with CLN2 disease, using national wellbeing and quality of life (QoL) measures. Primary (n=19) and secondary (n=10) caregivers, adult siblings (n=2), and child siblings (n=2) were included. Caregivers reported reduced health-related QoL compared with age and gender-matched controls (mean utility scores 0.08 and 0.11 lower in Germany and the UK, respectively). Hours of caregiving were significantly higher relative to that provided to a child of normal health, with stress, back pain, and reductions in sleep being recorded. Lower life satisfaction and happiness with partners were also reported, along with significant financial burden. Those caring for children in the late stage of disease were more greatly impacted than those with children in the rapidly progressive stage, or who were bereaved. The results of this study make clear the importance of emotional and practical support for caregivers and siblings coping with CLN2 disease

    New evidence on the origin of the microquasar GRO J1655-40

    Get PDF
    Aims. Motivated by the new determination of the distance to the microquasar GRO J1655-40 by Foellmi et al. (2006), we conduct a detailed study of the distribution of the atomic and molecular gas, and dust around the open cluster NGC 6242, the possible birth place of the microquasar. The proximity and relative height of the cluster on the galactic disk provides a unique opportunity to study SNR evolution and its possible physical link with microquasar formation. Methods. We search in the interstellar atomic and molecular gas around NGC 6242 for traces that may have been left from a supernova explosion associated to the formation of the black hole in GRO J1655-40. Furthermore, the 60/100 mu IR color is used as a tracer of shocked-heated dust. Results. At the kinematical distance of the cluster the observations have revealed the existence of a HI hole of 1.5*1.5 degrees in diameter and compressed CO material acumulated along the south-eastern internal border of the HI cavity. In this same area, we found extended infrared emission with characteristics of shocked-heated dust. Based on the HI, CO and FIR emissions, we suggest that the cavity in the ISM was produced by a supernova explosion occured within NGC 6242. The lower limit to the kinematic energy transferred by the supernova shock to the surrounding interstellar medium is ~ 10^{49} erg and the atomic and molecular mass displaced to form the cavity of ~ 16.500 solar masses. The lower limit to the time elapsed since the SN explosion is ~ 2.2*10^{5} yr, which is consistent with the time required by GRO J1655-40 to move from the cluster up to its present position. The observations suggest that GRO J1655-40 could have been born inside NGC 6242, being one of the nearest microquasars known so far.Comment: 6 pages, 6 figures. Accepted for publication in Astronomy & Astrophysic
    corecore