153 research outputs found

    Account of Adventures in the Great American Desert by Duke Paul Wilhelm von Wurttemberg (concluded)

    Get PDF

    Exploring Interacting Quantum Many-Body Systems by Experimentally Creating Continuous Matrix Product States in Superconducting Circuits

    Get PDF
    Improving the understanding of strongly correlated quantum many body systems such as gases of interacting atoms or electrons is one of the most important challenges in modern condensed matter physics, materials research and chemistry. Enormous progress has been made in the past decades in developing both classical and quantum approaches to calculate, simulate and experimentally probe the properties of such systems. In this work we use a combination of classical and quantum methods to experimentally explore the properties of an interacting quantum gas by creating experimental realizations of continuous matrix product states - a class of states which has proven extremely powerful as a variational ansatz for numerical simulations. By systematically preparing and probing these states using a circuit quantum electrodynamics (cQED) system we experimentally determine a good approximation to the ground-state wave function of the Lieb-Liniger Hamiltonian, which describes an interacting Bose gas in one dimension. Since the simulated Hamiltonian is encoded in the measurement observable rather than the controlled quantum system, this approach has the potential to apply to exotic models involving multicomponent interacting fields. Our findings also hint at the possibility of experimentally exploring general properties of matrix product states and entanglement theory. The scheme presented here is applicable to a broad range of systems exploiting strong and tunable light-matter interactions.Comment: 11 pages, 9 figure

    An exciplex-based light-emission pathway for solution-state electrochemiluminescent devices

    Get PDF
    This work was financially supported by the Alexander von Humboldt Foundation (Humboldt-Professorship to M.C.G.). C.K.M. acknowledges funding from the European Commission through a Marie SkƂodowska Curie individual fellowship (101029807). J.F.B. acknowledges funding from Beverly and Frank MacInnis via the University of St Andrews.Electrochemiluminescence (ECL) allows the design of unique light-emitting devices that use organic semiconductors in a liquid or gel state, which allows for simpler and more sustainable device fabrication and facilitates unconventional device form-factors. Compared to solid-state organic LEDs, ECL devices (ECLDs) have attracted less attention due to their currently much lower performance. ECLD operation is typically based on an annihilation pathway that involves electron transfer between reduced and oxidized luminophore species; the intermediate radical ions produced during annihilation dramatically reduce device stability. Here, the effects of radical ions are mitigated by an exciplex formation pathway and a remarkable improvement in luminance, luminous efficacy, and operational lifetime is demonstrated. Electron donor and acceptor molecules are dissolved at high concentrations and recombined as an exciplex upon their oxidization/reduction. The exciplex then transfers its energy to a nearby dye, allowing the dye to emit light without undergoing oxidation/reduction. Furthermore, the application of a mesoporous TiO2 electrode increases the contact area and hence the number of molecules participating in ECL , thereby obtaining devices with a very high luminance of 3790 cd m−2 and a 30-fold improved operational lifetime. This study paves the way for the development of ECLDs into highly versatile light sources.Publisher PDFPeer reviewe

    Mobilisation or dilution? Nitrate response of karst springs to high rainfall events

    Get PDF
    peer-reviewedNitrate (NO3−) contamination of groundwater associated with agronomic activity is of major concern in many countries. Where agriculture, thin free draining soils and karst aquifers coincide, groundwater is highly vulnerable to nitrate contamination. As residence times and denitrification potential in such systems are typically low, nitrate can discharge to surface waters unabated. However, such systems also react quickest to agricultural management changes that aim to improve water quality. In response to storm events, nitrate concentrations can alter significantly, i.e. rapidly decreasing or increasing concentrations. The current study examines the response of a specific karst spring situated on a grassland farm in South Ireland to rainfall events utilising high-resolution nitrate and discharge data together with on-farm borehole groundwater fluctuation data. Specifically, the objectives of the study are to formulate a scientific hypothesis of possible scenarios relating to nitrate responses during storm events, and to verify this hypothesis using additional case studies from the literature. This elucidates the controlling key factors that lead to mobilisation and/or dilution of nitrate concentrations during storm events. These were land use, hydrological condition and karstification, which in combination can lead to differential responses of mobilised and/or diluted nitrate concentrations. Furthermore, the results indicate that nitrate response in karst is strongly dependent on nutrient source, whether mobilisation and/or dilution occur and on the pathway taken. This will have consequences for the delivery of nitrate to a surface water receptor. The current study improves our understanding of nitrate responses in karst systems and therefore can guide environmental modellers, policy makers and drinking water managers with respect to the regulations of the European Union (EU) Water Framework Directive (WFD). In future, more research should focus on the high-resolution monitoring of karst aquifers to capture the high variability of hydrochemical processes, which occur at time intervals of hours to days.Teagasc Walsh Fellowship Programm

    Observation of inhibited electron-ion coupling in strongly heated graphite

    Get PDF
    Creating non-equilibrium states of matter with highly unequal electron and lattice temperatures (Tele≠Tion) allows unsurpassed insight into the dynamic coupling between electrons and ions through time-resolved energy relaxation measurements. Recent studies on low-temperature laser-heated graphite suggest a complex energy exchange when compared to other materials. To avoid problems related to surface preparation, crystal quality and poor understanding of the energy deposition and transport mechanisms, we apply a different energy deposition mechanism, via laser-accelerated protons, to isochorically and non-radiatively heat macroscopic graphite samples up to temperatures close to the melting threshold. Using time-resolved x ray diffraction, we show clear evidence of a very small electron-ion energy transfer, yielding approximately three times longer relaxation times than previously reported. This is indicative of the existence of an energy transfer bottleneck in non-equilibrium warm dense matter

    At-sea movements of wedge-tailed shearwaters during and outside the breeding season from four colonies in New Caledonia

    Get PDF
    International audienceThe wedge-tailed shearwater (WTS) population of New Caledonia is one of the largest in the world, yet its biology and foraging ecology are poorly known. We studied WTS from 4 colonies in New Caledonia. We examined foraging behaviour and habitats using GPS receivers and light sensors during and outside the breeding season, respectively, and compared our findings with those from other WTS populations worldwide. During breeding, New Caledonian WTS alternated short foraging trips close to the colony over the lagoon, or off the reef edge, with longer trips over distant, deep waters. Whereas neighboring colonies overlapped at sea, especially during short trips, there was a clear separation of foraging zones between the pairs of colonies located in the southern versus northwestern parts of New Caledonia. Although WTS actively foraged and commuted to foraging zones during the day, they mainly returned to the colony or rested at night, indicating that they feed mainly during the day. Active foraging did not take place in more productive areas, suggesting that it may instead be related to the presence of sub-surface predators. Outside the breeding season, birds from 3 colonies had similar trans-equatorial migratory behaviour. All left New Caledonia at the same time of the year with a fast, northeasterly movement and wintered over deep waters in the same sector of the northwestern tropical Pacific Ocean. At overwintering sites, they spent most of their non-foraging time presumably sitting on the water, especially at night, making a slow westward movement before returning to New Caledonia. WTS from New Caledonia forage over warm, oligotrophic deep waters throughout their life cycle, and the species appears to have a flexible foraging strategy adapted to the various environmental conditions encountered across its wide tropical range
    • 

    corecore