87 research outputs found

    Measuring soil frost depth in forest ecosystems with ground penetrating radar

    Get PDF
    Soil frost depth in forest ecosystems can be variable and depends largely on early winter air temperaturesand the amount and timing of snowfall. A thorough evaluation of ecological responses to seasonallyfrozen ground is hampered by our inability to adequately characterize the frequency, depth, durationand intensity of soil frost events. We evaluated the use of ground penetrating radar to nondestructivelydelineate soil frost under field conditions in three forest ecosystems. Soil frost depth was monitoredperiodically using a 900 MHz antenna in South Burlington, Vermont (SB), Sleepers River Watershed,North Danville, Vermont (SR) and Hubbard Brook Experimental Forest, New Hampshire (HBEF) duringwinter 2011–2012 on plots with snow and cleared of snow. GPR-based estimates were compared to datafrom thermistors and frost tubes, which estimate soil frost depth with a color indicating solution. In theabsence of snow, frost was initially detected at a depth of 8–10 cm. Dry snow up to 35 cm deep, enhancednear-surface frost detection, raising the minimum frost detection depth to 4–5 cm. The most favorablesurface conditions for GPR detection were bare soil or shallow dry snow where frost had penetrated to theminimum detectable depth. Unfavorable conditions included: standing water on frozen soil, wet snow,thawed surface soils and deep snow pack. Both SB and SR were suitable for frost detection most of thewinter, while HBEF was not. Tree roots were detected as point reflections and were readily discriminatedfrom continuous frost reflections. The bias of GPR frost depth measurements relative to thermistors wassite dependent averaging 0.1 cm at SB and 1.1 cm at SR, and was not significantly different than zero. Whenseparated by snow manipulation treatment at SR, overestimation of soil frost depth (5.5 cm) occurredon plots cleared of snow and underestimation (−1.5 cm) occurred on plots with snow. Despite somelimitations posed by site and surface suitability, GPR could be useful for adding a spatial component topre-installed soil frost monitoring networks

    Asbestos Burden Predicts Survival in Pleural Mesothelioma

    Get PDF
    Background: Malignant pleural mesothelioma (MPM) is a rapidly fatal asbestos-associated malignancy with a median survival time of &lt; 1 year following diagnosis. Treatment strategy is determined in part using known prognostic factors. Objective: The aim of this study was to examine the relationship between asbestos exposure and survival outcome in MPM in an effort to advance the understanding of the contribution of asbestos exposure to MPM prognosis. Methods: We studied incident cases of MPM patients enrolled through the International Mesothelioma Program at Brigham and Women’s Hospital in Boston, Massachusetts, using survival follow-up, self-reported asbestos exposure (n = 128), and a subset of cases (n = 80) with quantitative asbestos fiber burden measures. Results: Consistent with the established literature, we found independent, significant associations between male sex and reduced survival (p 1,099), suggested a survival duration association among these groups (p = 0.06). After adjusting for covariates in a Cox model, we found that patients with a low asbestos burden had a 3-fold elevated risk of death compared to patients with a moderate fiber burden [95% confidence interval (CI), 0.95–9.5; p = 0.06], and patients with a high asbestos burden had a 4.8-fold elevated risk of death (95% CI, 1.5–15.0; p < 0.01) versus those with moderate exposure. Conclusion: Our data suggest that patient survival is associated with asbestos fiber burden in MPM and is perhaps modified by susceptibility

    The Effects of 11 Yr of CO2 Enrichment on Roots in a Florida Scrub-Oak Ecosystem

    Get PDF
    Uncertainty surrounds belowground plant responses to rising atmospheric CO2 because roots are difficult to measure, requiring frequent monitoring as a result of fine root dynamics and long-term monitoring as a result of sensitivity to resource availability. We report belowground plant responses of a scrub-oak ecosystem in Florida exposed to 11yr of elevated atmospheric CO2 using open-top chambers. We measured fine root production, turnover and biomass using minirhizotrons, coarse root biomass using ground-penetrating radar and total root biomass using soil cores. Total root biomass was greater in elevated than in ambient plots, and the absolute difference was larger than the difference aboveground. Fine root biomass fluctuated by more than a factor of two, with no unidirectional temporal trend, whereas leaf biomass accumulated monotonically. Strong increases in fine root biomass with elevated CO2 occurred after fire and hurricane disturbance. Leaf biomass also exhibited stronger responses following hurricanes. Responses after fire and hurricanes suggest that disturbance promotes the growth responses of plants to elevated CO2. Increased resource availability associated with disturbance (nutrients, water, space) may facilitate greater responses of roots to elevated CO2. The disappearance of responses in fine roots suggests limits on the capacity of root systems to respond to CO2 enrichment

    Folliculin mutations are not associated with severe COPD

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Rare loss-of-function folliculin (<it>FLCN</it>) mutations are the genetic cause of Birt-Hogg-Dubé syndrome, a monogenic disorder characterized by spontaneous pneumothorax, fibrofolliculomas, and kidney tumors. Loss-of-function folliculin mutations have also been described in pedigrees with familial spontaneous pneumothorax. Because the majority of patients with folliculin mutations have radiographic evidence of pulmonary cysts, folliculin has been hypothesized to contribute to the development of emphysema.</p> <p>To determine whether folliculin sequence variants are risk factors for severe COPD, we genotyped seven previously reported Birt-Hogg-Dubé or familial spontaneous pneumothorax associated folliculin mutations in 152 severe COPD probands participating in the Boston Early-Onset COPD Study. We performed bidirectional resequencing of all 14 folliculin exons in a subset of 41 probands and subsequently genotyped four identified variants in an independent sample of345 COPD subjects from the National Emphysema Treatment Trial (cases) and 420 male smokers with normal lung function from the Normative Aging Study (controls).</p> <p>Results</p> <p>None of the seven previously reported Birt-Hogg-Dubé or familial spontaneous pneumothorax mutations were observed in the 152 severe, early-onset COPD probands. Exon resequencing identified 31 variants, including two non-synonymous polymorphisms and two common non-coding polymorphisms. No significant association was observed for any of these four variants with presence of COPD or emphysema-related phenotypes.</p> <p>Conclusion</p> <p>Genetic variation in folliculin does not appear to be a major risk factor for severe COPD. These data suggest that familial spontaneous pneumothorax and COPD have distinct genetic causes, despite some overlap in radiographic characteristics.</p

    Modelling the limits on the response of net carbon exchange to fertilization in a south-eastern pine forest

    Full text link
    Using a combination of model simulations and detailed measurements at a hierarchy of scales conducted at a sandhills forest site, the effect of fertilization on net ecosystem exchange ( NEE ) and its components in 6-year-old Pinus taeda stands was quantified. The detailed measurements, collected over a 20-d period in September and October, included gas exchange and eddy covariance fluxes, sampled for a 10-d period each at the fertilized stand and at the control stand. Respiration from the forest floor and above-ground biomass was measured using chambers during the experiment. Fertilization doubled leaf area index (LAI) and increased leaf carboxylation capacity by 20%. However, this increase in total LAI translated into an increase of only 25% in modelled sunlit LAI and in canopy photosynthesis. It is shown that the same climatic and environmental conditions that enhance photosynthesis in the September and October periods also cause an increase in respiration The increases in respiration counterbalanced photosynthesis and resulted in negligible NEE differences between fertilized and control stands. The fact that total biomass of the fertilized stand exceeded 2·5 times that of the control, suggests that the counteracting effects cannot persist throughout the year. In fact, modelled annual carbon balance showed that gross primary productivity ( GPP ) increased by about 50% and that the largest enhancement in NEE occurred in the spring and autumn, during which cooler temperatures reduced respiration more than photosynthesis. The modelled difference in annual NEE between fertilized  and  control  stands  (approximately  200 1;g 2;C 3;m −2 y −1 )  suggest that the effect of fertilization was sufficiently large to transform the stand from a net terrestrial carbon source to a net sink.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73712/1/j.1365-3040.2002.00896.x.pd

    Soil Respiration in Relation to Photosynthesis of Quercus mongolica Trees at Elevated CO2

    Get PDF
    Knowledge of soil respiration and photosynthesis under elevated CO2 is crucial for exactly understanding and predicting the carbon balance in forest ecosystems in a rapid CO2-enriched world. Quercus mongolica Fischer ex Ledebour seedlings were planted in open-top chambers exposed to elevated CO2 (EC = 500 µmol mol−1) and ambient CO2 (AC = 370 µmol mol−1) from 2005 to 2008. Daily, seasonal and inter-annual variations in soil respiration and photosynthetic assimilation were measured during 2007 and 2008 growing seasons. EC significantly stimulated the daytime soil respiration by 24.5% (322.4 at EC vs. 259.0 mg CO2 m−2 hr−1 at AC) in 2007 and 21.0% (281.2 at EC vs. 232.6 mg CO2 m−2 hr−1 at AC) in 2008, and increased the daytime CO2 assimilation by 28.8% (624.1 at EC vs. 484.6 mg CO2 m−2 hr−1 at AC) across the two growing seasons. The temporal variation in soil respiration was positively correlated with the aboveground photosynthesis, soil temperature, and soil water content at both EC and AC. EC did not affect the temperature sensitivity of soil respiration. The increased daytime soil respiration at EC resulted mainly from the increased aboveground photosynthesis. The present study indicates that increases in CO2 fixation of plants in a CO2-rich world will rapidly return to the atmosphere by increased soil respiration
    corecore