282 research outputs found

    The adaptive value of phenotypic plasticity in two ecotypes of a marine gastropod

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Few surveys have concentrated on studying the adaptive value of phenotypic plasticity within genetically-distinct conspecific ecotypes. Here, we conduct a test to assess the adaptive value that partial phenotypic plasticity may have for survival in the marine gastropod <it>Littorina saxatilis</it>. This species has evolved canalized ecotypes but, nevertheless, the ecotypes show some phenotypic plasticity for the traits under divergent selection between wave-exposed and high-predation habitats.</p> <p>Results</p> <p>We exposed juveniles of each ecotype to several environmental treatments under laboratory conditions in order to produce shape variation associated with plasticity. The two ecotypes from different treatments were then transplanted to the wave-exposed habitat and the survival rate was monitored. Ecotype explained the largest distinction in survival rate while treatment caused variation in survival rate within the ecotype released into its parental habitat which was correlated with plastic changes in shell shape. Snails that had experienced a treatment mimicking the environment of the transplantation location survived with the highest rate, while individuals from the contrary experimental treatment had lower survivorship.</p> <p>Conclusions</p> <p>We conclude that the partial plastic response shown in <it>Littorina saxatilis </it>has a significant impact on fitness, although this remains small compared to the overall adaptive difference between ecotypes.</p

    Signals of demographic expansion in Drosophila virilis

    Get PDF
    Background. The pattern of genetic variation within and among populations of a species is strongly affected by its phylogeographic history. Analyses based on putatively neutral markers provide data from which past events, such as population expansions and colonizations, can be inferred. Drosophila virilis is a cosmopolitan species belonging to the virilis group, where divergence times between different phylads go back to the early Miocene. We analysed mitochondrial DNA sequence variation among 35 Drosophila virilis strains covering the species' range in order to detect demographic events that could be used to understand the present characteristics of the species, as well as its differences from other members of the group. Results. Drosophila virilis showed very low nucleotide diversity with haplotypes distributed in a star-like network, consistent with a recent world-wide exponential expansion possibly associated either with domestication or post-glacial colonization. All analyses point towards a rapid population expansion. Coalescence models support this interpretation. The central haplotype in the network, which could be interpreted as ancestral, is widely distributed and gives no information about the geographical origin of the population expansion. The species showed no geographic structure in the distribution of mitochondrial haplotypes, in contrast to results of a recent microsatellite-based analysis. Conclusion. The lack of geographic structure and the star-like topology depicted by the D. virilis haplotypes indicate a pattern of global demographic expansion, probably related to human movements, although this interpretation cannot be distinguished from a selective sweep in the mitochondrial DNA until nuclear sequence data become available. The particular behavioural traits of this species, including weak species-discrimination and intraspecific mate choice exercised by the females, can be understood from this perspective.peerReviewe

    Using replicate hybrid zones to understand the genomic basis of adaptive divergence

    Get PDF
    Combining hybrid zone analysis with genomic data is a promising approach to understanding the genomic basis of adaptive divergence. It allows for the identification of genomic regions underlying barriers to gene flow. It also provides insights into spatial patterns of allele frequency change, informing about the interplay between environmental factors, dispersal and selection. However, when only a single hybrid zone is analysed, it is difficult to separate patterns generated by selection from those resulting from chance. Therefore, it is beneficial to look for repeatable patterns across replicate hybrid zones in the same system. We applied this approach to the marine snail Littorina saxatilis, which contains two ecotypes, adapted to wave-exposed rocks vs. high-predation boulder fields. The existence of numerous hybrid zones between ecotypes offered the opportunity to test for the repeatability of genomic architectures and spatial patterns of divergence. We sampled and phenotyped snails from seven replicate hybrid zones on the Swedish west coast and genotyped them for thousands of single nucleotide polymorphisms. Shell shape and size showed parallel clines across all zones. Many genomic regions showing steep clines and/or high differentiation were shared among hybrid zones, consistent with a common evolutionary history and extensive gene flow between zones, and supporting the importance of these regions for divergence. In particular, we found that several large putative inversions contribute to divergence in all locations. Additionally, we found evidence for consistent displacement of clines from the boulder–rock transition. Our results demonstrate patterns of spatial variation that would not be accessible without continuous spatial sampling, a large genomic data set and replicate hybrid zones.publishedVersio

    Towards the completion of speciation : the evolution of reproductive isolation beyond the first barriers

    Get PDF
    y Speciation, that is, the evolution of reproductive barriers eventually leading to complete isolation, is a crucial process generating biodiversity. Recent work has contributed much to our understanding of how reproductive barriers begin to evolve, and how they are maintained in the face of gene flow. However, little is known about the transition from partial to strong reproductive isolation (RI) and the completion of speciation. We argue that the evolution of strong RI is likely to involve different processes, or new interactions among processes, compared with the evolution of the first reproductive barriers. Transition to strong RI may be brought about by changing external conditions, for example, following secondary contact. However, the increasing levels of RI themselves create opportunities for new barriers to evolve and, and interaction or coupling among barriers. These changing processes may depend on genomic architecture and leave detectable signals in the genome. We outline outstanding questions and suggest more theoretical and empirical work, considering both patterns and processes associated with strong RI, is needed to understand how speciation is completed. This article is part of the theme issue 'Towards the completion of speciation: the evolution of reproductive isolation beyond the first barriers'.Peer reviewe

    Coupling, Reinforcement, and Speciation

    Full text link

    Evolution of a Complex Locus: Exon Gain, Loss and Divergence at the Gr39a Locus in Drosophila

    Get PDF
    Background. Gene families typically evolve by gene duplication followed by the adoption of new or altered gene functions. A different way to evolve new but related functions is alternative splicing of existing exons of a complex gene. The chemosensory gene families of animals are characterised by numerous loci of related function. Alternative splicing has only rarely been reported in chemosensory loci, for example in 5 out of around 120 loci in Drosophila melanogaster. The gustatory receptor gene Gr39a has four large exons that are alternatively spliced with three small conserved exons. Recently the genome sequences of eleven additional species of Drosophila have become available allowing us to examine variation in the structure of the Gr39a locus across a wide phylogenetic range of fly species. Methodology/Principal Findings. We describe a fifth exon and show that the locus has a complex evolutionary history with several duplications, pseudogenisations and losses of exons. PAML analyses suggested that the whole gene has a history of purifying selection, although this was less strong in exons which underwent duplication. Conclusions/Significance. Estimates of functional divergence between exons were similar in magnitude to functional divergence between duplicated genes, suggesting that exon divergence is broadly equivalent to gene duplication.Publisher PDFPeer reviewe

    Habitat Choice and Speciation

    Get PDF
    The role of habitat choice in reproductive isolation and ecological speciation has often been overlooked, despite acknowledgement of its ability to facilitate local adaptation. It can form part of the speciation process through various evolutionary mechanisms, yet where habitat choice has been included in models of ecological speciation little thought has been given to these underlying mechanisms. Here, we propose and describe three independent criteria underlying ten different evolutionary scenarios in which habitat choice may promote or maintain local adaptation. The scenarios are the result of all possible combinations of the independent criteria, providing a conceptual framework in which to discuss examples which illustrate each scenario. These examples show that the different roles of habitat choice in ecological speciation have rarely been effectively distinguished. Making such distinctions is an important challenge for the future, allowing better experimental design, stronger inferences and more meaningful comparisons among systems. We show some of the practical difficulties involved by reviewing the current evidence for the role of habitat choice in local adaptation and reproductive isolation in the intertidal gastropod Littorina saxatilis, a model system for the study of ecological speciation, assessing whether any of the proposed scenarios can be reliably distinguished, given current research

    A systematic review of phenotypic responses to between-population outbreeding

    Get PDF
    This work was supported by the UK Population Biology Network, through funding from the Natural Environment Research Council and Natural England. We thank Jack Brodie, Helen Hipperson, Marie Chadburn and Sophie Allen for assistance with literature searching, article assessment and data extraction. We also thank our review group for constructive criticism on the scope, development and structure of this review, and two peer reviewers for useful feedback on the review protocol. Finally we thank three peer reviewers who each provided constructive comments on this systematic review report.Peer reviewedPublisher PD

    Instability of natural selection at candidate barrier loci underlying speciation in wood ants

    Get PDF
    doi: 10.1111/mec.15606Speciation underlies the generation of novel biodiversity. Yet, there is much to learn about how natural selection shapes genomes during speciation. Selection is assumed to act against gene flow at barrier loci, promoting reproductive isolation. However, evidence for gene flow and selection is often indirect and we know very little about the temporal stability of barrier loci. Here we utilize haplodiploidy to identify candidate male barrier loci in hybrids between two wood ant species. As ant males are haploid, they are expected to reveal recessive barrier loci, which can be masked in diploid females if heterozygous. We then test for barrier stability in a sample collected 10 years later and use survival analysis to provide a direct measure of natural selection acting on candidate male barrier loci. We find multiple candidate male barrier loci scattered throughout the genome. Surprisingly, a proportion of them are not stable after 10 years, natural selection apparently switching from acting against to favouring introgression in the later sample. Instability of the barrier effect and natural selection for introgressed alleles could be due to environment-dependent selection, emphasizing the need to consider temporal variation in the strength of natural selection and the stability of the barrier effect at putative barrier loci in future speciation work.Peer reviewe
    corecore