932 research outputs found

    The role of symmetry on interface states in magnetic tunnel junctions

    Full text link
    When an electron tunnels from a metal into the barrier in a magnetic tunnel junction it has to cross the interface. Deep in the metal the eigenstates for the electron can be labelled by the point symmetry group of the bulk but around the interface this symmetry is reduced and one has to use linear combinations of the bulk states to form the eigenstates labelled by the irreducible representations of the point symmetry group of the interface. In this way there can be states localized at the interface which control tunneling. The conclusions as to which are the dominant tunneling states are different from that conventionally found.Comment: 14 pages, 5 figures, accepted in PRB, v2: reference 3 complete

    Ab-initio calculation of Kerr spectra for semi-infinite systems including multiple reflections and optical interferences

    Full text link
    Based on Luttinger's formulation the complex optical conductivity tensor is calculated within the framework of the spin-polarized relativistic screened Korringa-Kohn-Rostoker method for layered systems by means of a contour integration technique. For polar geometry and normal incidence ab-initio Kerr spectra of multilayer systems are then obtained by including via a 2x2 matrix technique all multiple reflections between layers and optical interferences in the layers. Applications to Co|Pt5 and Pt3|Co|Pt5 on the top of a semi-infinite fcc-Pt(111) bulk substrate show good qualitative agreement with the experimental spectra, but differ from those obtained by applying the commonly used two-media approach.Comment: 32 pages (LaTeX), 5 figures (Encapsulated PostScript), submitted to Phys. Rev.

    Accurate evaluation of the interstitial KKR-Green function

    Full text link
    It is shown that the Brillouin zone integral for the interstitial KKR-Green function can be evaluated accurately by taking proper care of the free-electron singularities in the integrand. The proposed method combines two recently developed methods, a supermatrix method and a subtraction method. This combination appears to provide a major improvement compared with an earlier proposal based on the subtraction method only. By this the barrier preventing the study of important interstitial-like defects, such as an electromigrating atom halfway along its jump path, can be considered as being razed.Comment: 23 pages, RevTe

    Reduction of the Three Dimensional Schrodinger Equation for Multilayered Films

    Full text link
    In this paper, we present a method for reducing the three dimensional Schrodinger equation to study confined metallic states, such as quantum well states, in a multilayer film geometry. While discussing some approximations that are employed when dealing with the three dimensionality of the problem, we derive a one dimensional equation suitable for studying such states using an envelope function approach. Some applications to the Cu/Co multilayer system with regard to spin tunneling/rotations and angle resolved photoemission are discussed.Comment: 14 pages, 1 figur

    Probing bulk viscous matter-dominated models with Gamma-ray bursts

    Full text link
    In this paper we extend the range of consistency of a constant bulk viscosity model to redshifts up to z8.1z\sim 8.1. In this model the dark sector of the cosmic substratum is a viscous fluid with pressure p=ζθp= -\zeta \theta, where θ\theta is the fluid-expansion scalar and ζ\zeta is the coefficient of bulk viscosity. Using the sample of 59 high-redshift GRBs reported by Wei (2010), we calibrate GRBs at low redshifts with the Union 2 sample of SNe Ia, avoiding then the circularity problem. Testing the constant bulk viscosity model with GRBs we found the best fit for the viscosity parameter ζ~\tilde{\zeta} in the range 0<ζ~<30<\tilde{\zeta}<3, being so consistent with previous probes; we also determined the deceleration parameter q0q_0 and the redshift of transition to accelerated expansion. Besides we present an updated analysis of the model with CMB5-year data and CMB7-year data, as well as with the baryon acoustic peak BAO. From the statistics with CMB it turns out that the model does not describe in a feasible way the far far epoch of recombination of the universe, but is in very good concordance for epochs as far as z8.1z\sim 8.1 till present.Comment: 11 pages, 3 figures, submitted to JCA

    Ab initio Quantum and ab initio Molecular Dynamics of the Dissociative Adsorption of Hydrogen on Pd(100)

    Full text link
    The dissociative adsorption of hydrogen on Pd(100) has been studied by ab initio quantum dynamics and ab initio molecular dynamics calculations. Treating all hydrogen degrees of freedom as dynamical coordinates implies a high dimensionality and requires statistical averages over thousands of trajectories. An efficient and accurate treatment of such extensive statistics is achieved in two steps: In a first step we evaluate the ab initio potential energy surface (PES) and determine an analytical representation. Then, in an independent second step dynamical calculations are performed on the analytical representation of the PES. Thus the dissociation dynamics is investigated without any crucial assumption except for the Born-Oppenheimer approximation which is anyhow employed when density-functional theory calculations are performed. The ab initio molecular dynamics is compared to detailed quantum dynamical calculations on exactly the same ab initio PES. The occurence of quantum oscillations in the sticking probability as a function of kinetic energy is addressed. They turn out to be very sensitive to the symmetry of the initial conditions. At low kinetic energies sticking is dominated by the steering effect which is illustrated using classical trajectories. The steering effects depends on the kinetic energy, but not on the mass of the molecules. Zero-point effects lead to strong differences between quantum and classical calculations of the sticking probability. The dependence of the sticking probability on the angle of incidence is analysed; it is found to be in good agreement with experimental data. The results show that the determination of the potential energy surface combined with high-dimensional dynamical calculations, in which all relevant degrees of freedon are taken into account, leads to a detailed understanding of the dissociation dynamics of hydrogen at a transition metal surface.Comment: 15 pages, 9 figures, subm. to Phys. Rev.

    Spin fluctuations in nearly magnetic metals from ab-initio dynamical spin susceptibility calculations:application to Pd and Cr95V5

    Full text link
    We describe our theoretical formalism and computational scheme for making ab-initio calculations of the dynamic paramagnetic spin susceptibilities of metals and alloys at finite temperatures. Its basis is Time-Dependent Density Functional Theory within an electronic multiple scattering, imaginary time Green function formalism. Results receive a natural interpretation in terms of overdamped oscillator systems making them suitable for incorporation into spin fluctuation theories. For illustration we apply our method to the nearly ferromagnetic metal Pd and the nearly antiferromagnetic chromium alloy Cr95V5. We compare and contrast the spin dynamics of these two metals and in each case identify those fluctuations with relaxation times much longer than typical electronic `hopping times'Comment: 21 pages, 9 figures. To appear in Physical Review B (July 2000

    The Korringa-Kohn-Rostoker Non-Local Coherent Potential Approximation (KKR-NLCPA)

    Full text link
    We introduce the Korringa-Kohn-Rostocker non-local coherent potential approximation (KKR-NLCPA) for describing the electronic structure of disordered systems. The KKR-NLCPA systematically provides a hierarchy of improvements upon the widely used KKR-CPA approach and includes non-local correlations in the disorder configurations by means of a self-consistently embedded cluster. The KKR-NLCPA method satisfies all of the requirements for a successful cluster generalization of the KKR-CPA; it remains fully causal, becomes exact in the limit of large cluster sizes, reduces to the KKR-CPA for a single-site cluster, is straightforward to implement numerically, and enables the effects of short-range order upon the electronic structure to be investigated. In particular, it is suitable for combination with electronic density functional theory to give an ab-initio description of disordered systems. Future applications to charge correlation and lattice displacement effects in alloys and spin fluctuations in magnets amongst others are very promising. We illustrate the method by application to a simple one-dimensional model.Comment: Revised versio

    Measurement of (anti)deuteron and (anti)proton production in DIS at HERA

    Get PDF
    The first observation of (anti)deuterons in deep inelastic scattering at HERA has been made with the ZEUS detector at a centre-of-mass energy of 300--318 GeV using an integrated luminosity of 120 pb-1. The measurement was performed in the central rapidity region for transverse momentum per unit of mass in the range 0.3<p_T/M<0.7. The particle rates have been extracted and interpreted in terms of the coalescence model. The (anti)deuteron production yield is smaller than the (anti)proton yield by approximately three orders of magnitude, consistent with the world measurements.Comment: 26 pages, 9 figures, 5 tables, submitted to Nucl. Phys.
    corecore