293 research outputs found

    Deuteration as an evolutionary tracer in massive-star formation

    Full text link
    Theory predicts, and observations confirm, that the column density ratio of a molecule containing D to its counterpart containing H can be used as an evolutionary tracer in the low-mass star formation process. Since it remains unclear if the high-mass star formation process is a scaled-up version of the low-mass one, we investigated whether the relation between deuteration and evolution can be applied to the high-mass regime. With the IRAM-30m telescope, we observed rotational transitions of N2D+ and N2H+ and derived the deuterated fraction in 27 cores within massive star-forming regions understood to represent different evolutionary stages of the massive-star formation process. Results. Our results clearly indicate that the abundance of N2D+ is higher at the pre-stellar/cluster stage, then drops during the formation of the protostellar object(s) as in the low-mass regime, remaining relatively constant during the ultra-compact HII region phase. The objects with the highest fractional abundance of N2D+ are starless cores with properties very similar to typical pre-stellar cores of lower mass. The abundance of N2D+ is lower in objects with higher gas temperatures as in the low-mass case but does not seem to depend on gas turbulence. Our results indicate that the N2D+-to-N2H+ column density ratio can be used as an evolutionary indicator in both low- and high-mass star formation, and that the physical conditions influencing the abundance of deuterated species likely evolve similarly during the processes that lead to the formation of both low- and high-mass stars.Comment: Accepted by A&AL, 4 pages, 2 figures, 2 appendices (one for Tables, one for additional figures

    Thermal Jeans fragmentation within 1000 AU in OMC-1S

    Full text link
    We present subarcsecond 1.3 mm continuum ALMA observations towards the Orion Molecular Cloud 1 South (OMC-1S) region, down to a spatial resolution of 74 AU, which reveal a total of 31 continuum sources. We also present subarcsecond 7 mm continuum VLA observations of the same region, which allow to further study fragmentation down to a spatial resolution of 40 AU. By applying a Mean Surface Density of Companions method we find a characteristic spatial scale at ~560 AU, and we use this spatial scale to define the boundary of 19 `cores' in OMC-1S as groupings of millimeter sources. We find an additional characteristic spatial scale at ~2900 AU, which is the typical scale of the filaments in OMC-1S, suggesting a two-level fragmentation process. We measured the fragmentation level within each core and find a higher fragmentation towards the southern filament. In addition, the cores of the southern filament are also the densest (within 1100 AU) cores in OMC-1S. This is fully consistent with previous studies of fragmentation at spatial scales one order of magnitude larger, and suggests that fragmentation down to 40 AU seems to be governed by thermal Jeans processes in OMC-1S.Comment: Accepted to Ap

    The CHESS survey of the L1157-B1 bow-shock: high and low excitation water vapor

    Full text link
    Molecular outflows powered by young protostars strongly affect the kinematics and chemistry of the natal molecular cloud through strong shocks resulting in substantial modifications of the abundance of several species. As part of the "Chemical Herschel Surveys of Star forming regions" guaranteed time key program, we aim at investigating the physical and chemical conditions of H20 in the brightest shock region B1 of the L1157 molecular outflow. We observed several ortho- and para-H2O transitions using HIFI and PACS instruments on board Herschel, providing a detailed picture of the kinematics and spatial distribution of the gas. We performed a LVG analysis to derive the physical conditions of H2O shocked material, and ultimately obtain its abundance. We detected 13 H2O lines probing a wide range of excitation conditions. PACS maps reveal that H2O traces weak and extended emission associated with the outflow identified also with HIFI in the o-H2O line at 556.9 GHz, and a compact (~10") bright, higher-excitation region. The LVG analysis of H2O lines in the bow-shock show the presence of two gas components with different excitation conditions: a warm (Tkin~200-300 K) and dense (n(H2)~(1-3)x10^6 cm-3) component with an assumed extent of 10" and a compact (~2"-5") and hot, tenuous (Tkin~900-1400 K, n(H2)~10^3-10^4 cm-3) gas component, which is needed to account for the line fluxes of high Eu transitions. The fractional abundance of the warm and hot H2O gas components is estimated to be (0.7-2)x10^{-6} and (1-3)x10^{-4}, respectively. Finally, we identified an additional component in absorption in the HIFI spectra of H2O lines connecting with the ground state level, probably arising from the photodesorption of icy mantles of a water-enriched layer at the edges of the cloud.Comment: Accepted for publication in A&A. 12 pages, 9 figures, 4 table

    The B1 shock in the L1157 outflow as seen at high spatial resolution

    Full text link
    We present high spatial resolution (750 AU at 250 pc) maps of the B1 shock in the blue lobe of the L1157 outflow in four lines: CS (3-2), CH3OH (3_K-2_K), HC3N (16-15) and p-H2CO (2_02-3_01). The combined analysis of the morphology and spectral profiles has shown that the highest velocity gas is confined in a few compact (~ 5 arcsec) bullets while the lowest velocity gas traces the wall of the gas cavity excavated by the shock expansion. A large velocity gradient model applied to the CS (3-2) and (2-1) lines provides an upper limit of 10^6 cm^-3 to the averaged gas density in B1 and a range of 5x10^3< n(H2)< 5x10^5 cm^-3 for the density of the high velocity bullets. The origin of the bullets is still uncertain: they could be the result of local instabilities produced by the interaction of the jet with the ambient medium or could be clump already present in the ambient medium that are excited and accelerated by the expanding outflow. The column densities of the observed species can be reproduced qualitatively by the presence in B1 of a C-type shock and only models where the gas reaches temperatures of at least 4000 K can reproduce the observed HC3N column density.Comment: 13 pages, 12 figure

    Broad N2H+ emission towards the protostellar shock L1157-B1

    Full text link
    We present the first detection of N2H+ towards a low-mass protostellar outflow, namely the L1157-B1 shock, at about 0.1 pc from the protostellar cocoon. The detection was obtained with the IRAM 30-m antenna. We observed emission at 93 GHz due to the J = 1-0 hyperfine lines. The analysis of the emission coupled with the HIFI CHESS multiline CO observations leads to the conclusion that the observed N2H+(1-0) line originates from the dense (> 10^5 cm-3) gas associated with the large (20-25 arcsec) cavities opened by the protostellar wind. We find a N2H+ column density of few 10^12 cm-2 corresponding to an abundance of (2-8) 10^-9. The N2H+ abundance can be matched by a model of quiescent gas evolved for more than 10^4 yr, i.e. for more than the shock kinematical age (about 2000 yr). Modelling of C-shocks confirms that the abundance of N2H+ is not increased by the passage of the shock. In summary, N2H+ is a fossil record of the pre-shock gas, formed when the density of the gas was around 10^4 cm-3, and then further compressed and accelerated by the shock.Comment: ApJ, in pres

    Mid-J CO Emission in Nearby Seyfert Galaxies

    Full text link
    We study for the first time the complete sub-millimeter spectra (450 GHz to 1550 GHz) of a sample of nearby active galaxies observed with the SPIRE Fourier Transform Spectrometer (SPIRE/FTS) onboard Herschel. The CO ladder (from Jup = 4 to 12) is the most prominent spectral feature in this range. These CO lines probe warm molecular gas that can be heated by ultraviolet photons, shocks, or X-rays originated in the active galactic nucleus or in young star-forming regions. In these proceedings we investigate the physical origin of the CO emission using the averaged CO spectral line energy distribution (SLED) of six Seyfert galaxies. We use a radiative transfer model assuming an isothermal homogeneous medium to estimate the molecular gas conditions. We also compare this CO SLED with the predictions of photon and X-ray dominated region (PDR and XDR) models.Comment: Proceedings of the Torus Workshop 2012 held at the University of Texas at San Antonio, 5-7 December 2012. C. Packham, R. Mason, and A. Alonso-Herrero (eds.); 6 pages, 3 figure

    Dense gas in IRAS 20343+4129: an ultracompact HII region caught in the act of creating a cavity

    Get PDF
    The intermediate- to high-mass star-forming region IRAS 20343+4129 is an excellent laboratory to study the influence of high- and intermediate-mass young stellar objects on nearby starless dense cores, and investigate for possible implications in the clustered star formation process. We present 3 mm observations of continuum and rotational transitions of several molecular species (C2H, c-C3H2, N2H+, NH2D) obtained with the Combined Array for Research in Millimetre-wave Astronomy, as well as 1.3 cm continuum and NH3 observations carried out with the Very Large Array, to reveal the properties of the dense gas. We confirm undoubtedly previous claims of an expanding cavity created by an ultracompact HII region associated with a young B2 zero-age main sequence (ZAMS) star. The dense gas surrounding the cavity is distributed in a filament that seems squeezed in between the cavity and a collimated outflow associated with an intermediate-mass protostar. We have identified 5 millimeter continuum condensations in the filament. All of them show column densities consistent with potentially being the birthplace of intermediate- to high-mass objects. These cores appear different from those observed in low-mass clustered environments in sereval observational aspects (kinematics, temperature, chemical gradients), indicating a strong influence of the most massive and evolved members of the protocluster. We suggest a possible scenario in which the B2 ZAMS star driving the cavity has compressed the surrounding gas, perturbed its properties and induced the star formation in its immediate surroundings.Comment: 17 pages, 13 figures. Accepted for publication in Monthly Notices of the Royal Astronomical Society (Main Journal

    Geofísica ambiental: técnicas no destructivas para el reconocimiento de zonas contaminadas por vertidos

    Get PDF
    Industrial countries face the consequences of decades of inappropiate handling of hazardous waste. The dumping of al1 types of hazardous materials has been ongoing in most industrialised countries for hundreds of years. Large quantities of industrial and other waste material have been buried in landfill sites. A relatively large number of these lack reliable man-made or natural geological barriers and toxic fluids are scaping and polluting the groundwater. The problem is greatly aggravated when a soil covenng is placed over the waste and there is no information about the dumping practices used in the past. One of the first tasks in any remedial action is to delineate the physical extent of the sites and its encroachment into the surrounding area. Test borings and limited excavations are very valuable but the information obtained is not continuous and dheir destructive nature makes it possible that waste could inadvertently be released during the probing phase. In this regard, both borehole drilling and excavation are very dangerous to workers and the environment and expensive and tedious to conduct.Many of these problems may be alleviated by using a geophysical assisted system approach to determine where the pollutants will go in the subsurface, gain more complete understanding of site conditions and asses the optimal placement of exploration drills and monitonng wells. At hazardous waste sites, the main objectives must commonly include:- Determine the presence, location, distribution, depth and composition of possible buried wastes.- Determine the presence and extent of contaminant and leachate plumes within the unsaturated and saturated zones.- Characterise and asses the local (and regional) geohydrologic regime for groundwater flow paterns, recharge areas and localised permeable pathways
    corecore