1,160 research outputs found

    Automatic mental processes, automatic actions and behaviours in game transfer phenomena: an empirical self-report study using online forum data

    Get PDF
    Previous studies have demonstrated that the playing of videogames can have both intended and unintended effects. The purpose of this study was to investigate the influence of videogames on players’ mental processes and behaviours in day-to-day settings. A total of 1,023 self-reports from 762 gamers collected from online videogame forums were classified, quantified, described and explained. The data include automatic thoughts, sensations and impulses, automatic mental replays of the game in real life, and voluntary/involuntary behaviours with videogame content. Many gamers reported that they had responded – at least sometimes – to real life stimuli as if they were still playing videogames. This included overreactions, avoidances, and involuntary movements of limbs. These experiences lasted relatively short periods of time but in a minority of players were recurrent. The gamers' experiences appeared to be enhanced by virtual embodiment, repetitive manipulation of game controls, and their gaming habits. However, similar phenomena may also occur when doing other non-gaming activities. The implications of these game transfer experiences are discussed

    Violent video games and morality: a meta-ethical approach

    Get PDF
    This paper considers what it is about violent video games that leads one reasonably minded person to declare "That is immoral" while another denies it. Three interpretations of video game content a re discussed: reductionist, narrow, and broad. It is argued that a broad interpretation is required for a moral objection to be justified. It is further argued that understanding the meaning of moral utterances – like "x is immoral" – is important to an understanding of why there is a lack of moral consensus when it comes to the content of violent video games. Constructive ecumenical expressivism is presented as a means of explaining what it is that we are doing when we make moral pronouncements and why, when it comes to video game content, differing moral attitudes abound. Constructive ecumenical expressivism is also presented as a means of illuminating what would be required for moral consensus to be achieved

    PyNAST: a flexible tool for aligning sequences to a template alignment

    Get PDF
    Motivation: The Nearest Alignment Space Termination (NAST) tool is commonly used in sequence-based microbial ecology community analysis, but due to the limited portability of the original implementation, it has not been as widely adopted as possible. Python Nearest Alignment Space Termination (PyNAST) is a complete reimplementation of NAST, which includes three convenient interfaces: a Mac OS X GUI, a command-line interface and a simple application programming interface (API)

    Retroviral DNA Integration: ASLV, HIV, and MLV Show Distinct Target Site Preferences

    Get PDF
    The completion of the human genome sequence has made possible genome-wide studies of retroviral DNA integration. Here we report an analysis of 3,127 integration site sequences from human cells. We compared retroviral vectors derived from human immunodeficiency virus (HIV), avian sarcoma-leukosis virus (ASLV), and murine leukemia virus (MLV). Effects of gene activity on integration targeting were assessed by transcriptional profiling of infected cells. Integration by HIV vectors, analyzed in two primary cell types and several cell lines, strongly favored active genes. An analysis of the effects of tissue-specific transcription showed that it resulted in tissue-specific integration targeting by HIV, though the effect was quantitatively modest. Chromosomal regions rich in expressed genes were favored for HIV integration, but these regions were found to be interleaved with unfavorable regions at CpG islands. MLV vectors showed a strong bias in favor of integration near transcription start sites, as reported previously. ASLV vectors showed only a weak preference for active genes and no preference for transcription start regions. Thus, each of the three retroviruses studied showed unique integration site preferences, suggesting that virus-specific binding of integration complexes to chromatin features likely guides site selection

    Gene therapy for Wiskott-Aldrich syndrome in a severely affected adult

    Get PDF
    Until recently, hematopoietic stem cell transplantation was the only curative option for Wiskott-Aldrich syndrome (WAS). The first attempts at gene therapy for WAS using a \u3d2-retroviral vector improved immunological parameters substantially but were complicated by acute leukemia as a result of insertional mutagenesis in a high proportion of patients. More recently, treatment of children with a state-of-the-art self-inactivating lentiviral vector (LV-w1.6 WASp) has resulted in significant clinical benefit without inducing selection of clones harboring integrations near oncogenes. Here, we describe a case of a presplenectomized 30-year-old patient with severe WAS manifesting as cutaneous vasculitis, inflammatory arthropathy, intermittent polyclonal lymphoproliferation, and significant chronic kidney disease and requiring long-term immunosuppressive treatment. Following reduced-intensity conditioning, there was rapid engraftment and expansion of a polyclonal pool of transgene-positive functional T cells and sustained gene marking in myeloid and B-cell lineages up to 20 months of observation. The patient was able to discontinue immunosuppression and exogenous immunoglobulin support, with improvement in vasculitic disease and proin-flammatory markers. Autologous gene therapy using a lentiviral vector is a viable strategy for adult WAS patients with severe chronic disease complications and for whom an allogeneic procedure could present an unacceptable risk. This trial was registered at www.clinicaltrials.gov as #NCT01347242

    A single amino acid substitution in ORF1 dramatically decreases L1 retrotransposition and provides insight into nucleic acid chaperone activity

    Get PDF
    L1 is a ubiquitous interspersed repeated sequence in mammals that achieved its high copy number by autonomous retrotransposition. Individual L1 elements within a genome differ in sequence and retrotransposition activity. Retrotransposition requires two L1-encoded proteins, ORF1p and ORF2p. Chimeric elements were used to map a 15-fold difference in retrotransposition efficiency between two L1 variants from the mouse genome, TFC and TFspa, to a single amino acid substitution in ORF1p, D159H. The steady-state levels of L1 RNA and protein do not differ significantly between these two elements, yet new insertions are detected earlier and at higher frequency in TFC, indicating that it converts expressed L1 intermediates more effectively into new insertions. The two ORF1 proteins were purified and their nucleic acid binding and chaperone activities were examined in vitro. Although the RNA and DNA oligonucleotide binding affinities of these two ORF1 proteins were largely indistinguishable, D159 was significantly more effective as a nucleic acid chaperone than H159. These findings support a requirement for ORF1p nucleic acid chaperone activity at a late step during L1 retrotransposition, extend the region of ORF1p that is known to be critical for its functional interactions with nucleic acids, and enhance understanding of nucleic acid chaperone activity

    Functional Characteristics of a Highly Specific Integrase Encoded by an LTR-Retrotransposon

    Get PDF
    Background: The retroviral Integrase protein catalyzes the insertion of linear viral DNA into host cell DNA. Although different retroviruses have been shown to target distinctive chromosomal regions, few of them display a site-specific integration. ZAM, a retroelement from Drosophila melanogaster very similar in structure and replication cycle to mammalian retroviruses is highly site-specific. Indeed, ZAM copies target the genomic 59-CGCGCg-39 consensus-sequences. To enlighten the determinants of this high integration specificity, we investigated the functional properties of its integrase protein denoted ZAM-IN. Principal Findings: Here we show that ZAM-IN displays the property to nick DNA molecules in vitro. This endonuclease activity targets specific sequences that are present in a 388 bp fragment taken from the white locus and known to be a genomic ZAM integration site in vivo. Furthermore, ZAM-IN displays the unusual property to directly bind specific genomic DNA sequences. Two specific and independent sites are recognized within the 388 bp fragment of the white locus: the CGCGCg sequence and a closely apposed site different in sequence. Conclusion: This study strongly argues that the intrinsic properties of ZAM-IN, ie its binding properties and its endonuclease activity, play an important part in ZAM integration specificity. Its ability to select two binding sites and to nick the DNA molecule reminds the strategy used by some site-specific recombination enzymes and forms the basis for site-specifi
    corecore