7,746 research outputs found

    Care staff perspectives of the role of music in the care of peopleliving with dementia

    Get PDF
    The rationale for this study was grounded in the current emphasis on developing non-pharmacological interventions for people living with dementia in the UK. The study investigated the common practice amongst care staff caring for people living with dementia to commission music activities as a recreational pastime. It examined staff perspectives on the value of these activities and the potential to develop the scope of therapeutic benefits that might simultaneously support the well-being of both the cared-for and the care-giver. It investigated personal and professional factors that might underpin inhibitions to staff training to facilitate music activities themselves and to staff exploring music as an education tool to develop creative and reflective practice. The study sought to generate original findings and to contribute to an evidence base to inform future practice. Method triangulation involved a questionnaire survey, telephone and face-to-face interviews, focus group discussions and participant observations. One hundred and ninety two participants took part in the study, comprising 149 care staff and 13 music practitioners who collectively worked in one or more of 27 care settings for older people in east Kent, 27 older people and three informal carers. The results showed that musicians and music practitioners were typically engaged by staff to deliver a fairly similar range of activities, around ten times per year on average. Practical barriers to staff taking part in these activities centred on issues of time-tabling and the challenges of balancing routine care-giving with non-routine activities. Psychological barriers appeared to be influenced by: cultural backgrounds; staff experiences of music education at school; preconceptions about musical skill; personal levels of confidence; social pressures; inter-staff relationships; and the relationships that staff have with visiting musicians. Barriers to formal training for staff to explore music as a catalyst for creative and reflective practice also included low or non-prioritisation of music in relation to their care-giving role and a belief that only musical staff would benefit

    Application of Pade Approximants to Determination of alpha_s(M_Z^2) from Hadronic Event Shape Observables in e+e- Annihilation

    Full text link
    We have applied Pade approximants to perturbative QCD calculations of event shape observables in e+e- --> hadrons. We used the exact O(alpha_s^2) prediction and the [0/1] Pade approximant to estimate the O(alpha_s^3) term for 15 observables, and in each case determined alpha_s(M_Z^2) from comparison with hadronic Z^0 decay data from the SLD experiment. We found the scatter among the alpha_s(M_Z^2) values to be significantly reduced compared with the standard O(alpha_s^2) determination, implying that the Pade method provides at least a partial approximation of higher-order perturbative contributions to event shape observables.Comment: 15 pages, 1 EPS figure, Submitted to Physics Letters

    Criteria for Core-Collapse Supernova Explosions by the Neutrino Mechanism

    Full text link
    We investigate the criteria for successful core-collapse supernova explosions by the neutrino mechanism. We find that a critical-luminosity/mass-accretion-rate condition distinguishes non-exploding from exploding models in hydrodynamic one-dimensional (1D) and two-dimensional (2D) simulations. We present 95 such simulations that parametrically explore the dependence on neutrino luminosity, mass accretion rate, resolution, and dimensionality. While radial oscillations mediate the transition between 1D accretion (non-exploding) and exploding simulations, the non-radial standing accretion shock instability characterizes 2D simulations. We find that it is useful to compare the average dwell time of matter in the gain region with the corresponding heating timescale, but that tracking the residence time distribution function of tracer particles better describes the complex flows in multi-dimensional simulations. Integral quantities such as the net heating rate, heating efficiency, and mass in the gain region decrease with time in non-exploding models, but for 2D exploding models, increase before, during, and after explosion. At the onset of explosion in 2D, the heating efficiency is \sim2% to \sim5% and the mass in the gain region is \sim0.005 M_{\sun} to \sim0.01 M_{\sun}. Importantly, we find that the critical luminosity for explosions in 2D is \sim70% of the critical luminosity required in 1D. This result is not sensitive to resolution or whether the 2D computational domain is a quadrant or the full 180^{\circ}. We suggest that the relaxation of the explosion condition in going from 1D to 2D (and to, perhaps, 3D) is of a general character and is not limited by the parametric nature of this study.Comment: 32 pages in emulateapj, including 17 figures, accepted for publication in ApJ, included changes suggested by the refere

    Gravitational Wave Background from Neutrino-Driven Gamma-Ray Bursts

    Full text link
    We discuss the gravitational wave background (GWB) from a cosmological population of gamma-ray bursts (GRBs). Among various emission mechanisms for the gravitational waves (GWs), we pay a particular attention to the vast anisotropic neutrino emissions from the accretion disk around the black hole formed after the so-called failed supernova explosions. The produced GWs by such mechanism are known as burst with memory, which could dominate over the low-frequency regime below \sim 10Hz. To estimate their amplitudes, we derive general analytic formulae for gravitational waveform from the axisymmetric jets. Based on the formulae, we first quantify the spectrum of GWs from a single GRB. Then, summing up its cosmological population, we find that the resultant value of the density parameter becomes roughly \Omega_{GW} \approx 10^{-20} over the wide-band of the low-frequency region, f\sim 10^{-4}-10^1Hz. The amplitude of GWB is sufficiently smaller than the primordial GWBs originated from an inflationary epoch and far below the detection limit.Comment: 6 pages, 4 figures, accepted for publication in MNRA

    A simple toy model of the advective-acoustic instability I. Perturbative approach

    Full text link
    Some general properties of the advective-acoustic instability are described and understood using a toy model which is simple enough to allow for analytical estimates of the eigenfrequencies. The essential ingredients of this model, in the unperturbed regime, are a stationary shock and a subsonic region of deceleration. For the sake of analytical simplicity, the 2D unperturbed flow is parallel and the deceleration is produced adiabatically by an external potential. The instability mechanism is determined unambiguously as the consequence of a cycle between advected and acoustic perturbations. The purely acoustic cycle, considered alone, is proven to be stable in this flow. Its contribution to the instability can be either constructive or destructive. A frequency cut-off is associated to the advection time through the region of deceleration. This cut-off frequency explains why the instability favours eigenmodes with a low frequency and a large horizontal wavelength. The relation between the instability occurring in this highly simplified toy model and the properties of SASI observed in the numerical simulations of stellar core-collapse is discussed. This simple set up is proposed as a benchmark test to evaluate the accuracy, in the linear regime, of numerical simulations involving this instability. We illustrate such benchmark simulations in a companion paper.Comment: 14 pages, 10 figures, ApJ in pres

    The Broadband Infrared Emission Spectrum of the Exoplanet TrES-3

    Get PDF
    We use the Spitzer Space Telescope to estimate the dayside thermal emission of the exoplanet TrES-3 integrated in the 3.6, 4.5, 5.8, and 8.0 micron bandpasses of the Infrared Array Camera (IRAC) instrument. We observe two secondary eclipses and find relative eclipse depths of 0.00346 +/- 0.00035, 0.00372 +/- 0.00054, 0.00449 +/- 0.00097, and 0.00475 +/- 0.00046, respectively in the 4 IRAC bandpasses. We combine our results with the earlier K band measurement of De Mooij et al. (2009), and compare them with models of the planetary emission. We find that the planet does not require the presence of an inversion layer in the high atmosphere. This is the first very strongly irradiated planet that does not have a temperature inversion, which indicates that stellar or planetary characteristics other than temperature have an important impact on temperature inversion. De Mooij & Snellen (2009) also detected a possible slight offset in the timing of the secondary eclipse in K band. However, based on our 4 Spitzer channels, we place a 3sigma upper limit of |ecos(w)| < 0.0056 where e is the planets orbital eccentricity and w is the longitude of the periastron. This result strongly indicates that the orbit is circular, as expected from tidal circularization theory.Comment: Accepted by Ap

    Equation-of-State Dependent Features in Shock-Oscillation Modulated Neutrino and Gravitational-Wave Signals from Supernovae

    Full text link
    We present 2D hydrodynamic simulations of the long-time accretion phase of a 15 solar mass star after core bounce and before the launch of a supernova explosion. Our simulations are performed with the Prometheus-Vertex code, employing multi-flavor, energy-dependent neutrino transport and an effective relativistic gravitational potential. Testing the influence of a stiff and a soft equation of state for hot neutron star matter, we find that the non-radial mass motions in the supernova core due to the standing accretion shock instability (SASI) and convection impose a time variability on the neutrino and gravitational-wave signals. These variations have larger amplitudes as well as higher frequencies in the case of a more compact nascent neutron star. After the prompt shock-breakout burst of electron neutrinos, a more compact accreting remnant radiates neutrinos with higher luminosities and larger mean energies. The observable neutrino emission in the direction of SASI shock oscillations exhibits a modulation of several 10% in the luminosities and ~1 MeV in the mean energies with most power at typical SASI frequencies of 20-100 Hz. At times later than 50-100 ms after bounce the gravitational-wave amplitude is dominated by the growing low-frequency (<200 Hz) signal associated with anisotropic neutrino emission. A high-frequency wave signal is caused by nonradial gas flows in the outer neutron star layers, which are stirred by anisotropic accretion from the SASI and convective regions. The gravitational-wave power then peaks at about 300-800 Hz with distinctively higher spectral frequencies originating from the more compact and more rapidly contracting neutron star. The detectability of the SASI effects in the neutrino and gravitational-wave signals is briefly discussed. (abridged)Comment: 21 pages, 11 figures, 45 eps files; revised version including discussion of signal detectability; accepted by Astronomy & Astrophysics; high-resolution images can be obtained upon reques

    Detection of a Temperature Inversion in the Broadband Infrared Emission Spectrum of TrES-4

    Get PDF
    We estimate the strength of the bandpass-integrated thermal emission from the extrasolar planet TrES-4 at 3.6, 4.5, 5.8, and 8.0 micron using the Infrared Array Camera (IRAC) on the Spitzer Space Telescope. We find relative eclipse depths of 0.137 +/- 0.011%, 0.148 +/- 0.016%, 0.261 +/- 0.059%, and 0.318 +/- 0.044% in these four bandpasses, respectively. We also place a 2 sigma upper limit of 0.37% on the depth of the secondary eclipse in the 16 micron IRS peak-up array. These eclipse depths reveal that TrES-4 has an emission spectrum similar to that of HD 209458b, which requires the presence of water emission bands created by an thermal inversion layer high in the atmosphere in order to explain the observed features. TrES-4 receives more radiation from its star than HD 209458b and has a correspondingly higher effective temperature, therefore the presence of a temperature inversion in this planet's atmosphere lends support to the idea that inversions might be correlated with the irradiance received by the planet. We find no evidence for any offset in the timing of the secondary eclipse, and place a 3 sigma upper limit of |ecos(omega)|<0.0058 where e is the planet's orbital eccentricity and omega is the argument of pericenter. From this we conclude that tidal heating from ongoing orbital circulatization is unlikely to be the explanation for TrES-4's inflated radius.Comment: 10 pages in emulateapj format, 7 figures (some in color), accepted for publication in Ap

    Macroalgae contribute to the diet of Patella vulgata from contrasting conditions of latitude and wave exposure in the UK

    Get PDF
    Analysis of gut contents and stable isotope composition of intertidal limpets (Patella vulgata) showed a major contribution of macroalgae to their diet, along with microalgae and invertebrates. Specimens were collected in areas with limited access to attached macroalgae, suggesting a major dietary component of drift algae. Gut contents of 480 animals from 2 moderately wave exposed and 2 sheltered rocky shores in each of 2 regions: western Scotland (55–56°N) and southwest England (50°N), were analysed in 2 years (n = 30 per site per year). The abundance of microalgae, macroalgae and invertebrates within the guts was quantified using categorical abundance scales. Gut content composition was compared among regions and wave exposure conditions, showing that the diet of P. vulgata changes with both wave exposure and latitude. Microalgae were most abundant in limpet gut contents in animals from southwest sites, whilst leathery/corticated macroalgae were more prevalent and abundant in limpets from sheltered and northern sites. P. vulgata appears to have a more flexible diet than previously appreciated and these keystone grazers consume not only microalgae, but also large quantities of macroalgae and small invertebrates. To date, limpet grazing studies have focussed on their role in controlling recruitment of macroalgae by feeding on microscopic propagules and germlings. Consumption of adult algae suggests P. vulgata may also directly control the biomass of attached macroalgae on the shore, whilst consumption of drift algae indicates the species may play important roles in coupling subtidal and intertidal production
    corecore