107 research outputs found

    Minipool Caprylic Acid Fractionation of Plasma Using Disposable Equipment: A Practical Method to Enhance Immunoglobulin Supply in Developing Countries

    Get PDF
    Plasma-derived immunoglobulin G (IgG) is on WHO’s Essential Medicines List, yet developing countries face severe shortages of this critical treatment. Infusion of IgG prepared from locally-collected plasma provides an advantageous mix of antibodies to viral and bacterial pathogens found in the living environment, and this can reduce recurrent infections in immune-deficient patients. We developed a simple manufacturing process using disposable equipment (blood bags, hemodialyzer, and filters) to isolate immunoglobulins from minipools of 20 plasma donations. This process yields a ca. 90% pure virally-inactivated immunoglobulin fraction at 50–60% recovery. Anti-hepatitis B and anti-rubella immunoglobulins were enriched fourfold to sixfold. The product was free of in-vitro thrombogenic and proteolytic activity, confirming its expected clinical safety profile. Virus validations showed caprylic acid treatment robustly inactivated or removed infectivity of lipid-enveloped viruses, including human immunodeficiency virus (HIV) and hepatitis C virus model. This simple and cost-effective process is implemented in Egypt to prepare experimental batches for clinical evaluation. It can enhance immunoglobulin supplies to treat immunodeficient patients through passive transmission of antibodies directed against local pathogens. The method requires minimal training and reasonable infrastructure, and is a practical means to prepare convalescent hyperimmune IgG during infectious outbreaks such as the current Ebola episode.UCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias de la Salud::Instituto Clodomiro Picado (ICP)UCR::Vicerrectoría de Docencia::Salud::Facultad de Microbiologí

    Antivenoms for the treatment of snakebite envenomings: The road ahead

    Get PDF
    The parenteral administration of antivenoms is the cornerstone of snakebite envenoming therapy. Efforts are made to ensure that antivenoms of adequate efficacy and safety are available world-wide. We address the main issues to be considered for the development and manufacture of improved antivenoms. Those include: (a) A knowledge-based composition design of venom mixtures used for immunization, based on biochemical, immunological, toxicological, taxonomic, clinical and epidemiological data; (b) a careful selection and adequate management of animals used for immunization; (c) well-designed immunization protocols; (d) sound innovations in plasma fractionation protocols to improve recovery, tolerability and stability of antivenoms; (e) the use of recombinant toxins as immunogens to generate antivenoms and the synthesis of engineered antibodies to substitute for animal-derived antivenoms; (f) scientific studies of the contribution of existing manufacturing steps to the inactivation or removal of viruses and other zoonotic pathogens; (g) the introduction of novel quality control tests; (h) the development of in vitro assays in substitution of in vivo tests to assess antivenom potency; and (i) scientifically-sound pre-clinical and clinical assessments of antivenoms. These tasks demand cooperative efforts at all main stages of antivenom development and production, and need concerted international partnerships between key stakeholders.Universidad de Costa Rica//UCR/Costa RicaInternational Foundation for Science//IFS/SueciaCiencia y Tecnología para el Desarrollo//CYTED/EspañaConsejo Superior de Investigaciones Científicas//CRUSA-CSIC/EspañaUCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias de la Salud::Instituto Clodomiro Picado (ICP
    • …
    corecore