160 research outputs found

    State-by-State Report on Permanent Public Access to Electronic Government Information

    Full text link
    The purpose of this study was to research what, if anything, state governments are doing to meet the enormous challenges of ensuring permanent public access to state electronic government information. A comprehensive survey was created and distributed to AALL authors in each of the fifty states, the District of Columbia and Puerto Rico. State authors completed the survey by December 2002 and, in addition, submitted a short executive summary based on their survey results. The survey reveals that only one state—Colorado—has enacted legislation that explicitly addresses permanent public access (effective August 15, 2003). No state, including Colorado, comprehensively addresses the challenges of permanent public access to and preservation of electronic government information. State records boards, state archives and state libraries are often aware of permanent public access issues and have often taken steps to preserve electronic information. They have sometimes taken steps to provide continuous public access or have developed guidelines for state agencies to provide such access. These efforts of state records boards, state archives and state libraries are often ineffective, however, because they lack a solid statutory foundation. Without comprehensive statutes supporting a system to coordinate and centralize permanent public access, state agencies thwart the positive efforts of state records boards, state archives and state libraries. The agencies fail to appreciate the need to ensure the full lifecycle of electronic government information, particularly Web-based publications and records. And any guidelines for permanent public access that target them do not solve the problem of agencies’ lack the expertise, personnel and funding. We envisioned that this project would be the first step in the advocacy process necessary to enact state laws that will prevent the loss of important state government information in electronic format. Toward this end, we sought to create a document that could be provided to legislators and other policymakers to educate them about the responsibility of state governments to ensure permanent public access to electronic information. An additional objective was to strengthen the GRC and WAO’s ties to AALL members at the local level, thereby forming a base of activists who could advocate for improved laws mandating permanent public access to state government information. Because AALL and other library organizations lack the manpower to tackle the problem of disappearing electronic government information in all states simultaneously, the Grant Team has identified key states to target for legislative activity

    Association between postnatal dexamethasone for treatment of bronchopulmonary dysplasia and brain volumes at adolescence in infants born very preterm

    Get PDF
    OBJECTIVES: To compare brain volumes in adolescents who were born extremely preterm (<28 weeks gestation) who had received postnatal dexamethasone, and to determine if there was a postnatal dexamethasone dose–response effect on brain volumes. STUDY DESIGN: Geographical cohort study of extremely preterm adolescents born in 1991-1992 in Victoria, Australia. T1-weighted magnetic resonance imaging was performed at 18 years of age. Segmented and parcellated brain volumes were calculated using an automated segmentation method (FreeSurfer) and compared between groups, with and without adjustment for potential confounders. The relationships between total postnatal dexamethasone dose and brain volumes were explored using linear regression. RESULTS: Of the 148 extremely preterm participants, 55 (37%) had received postnatal dexamethasone, with a cumulative mean dose of 7.7 mg/kg. Compared with participants who did not receive postnatal dexamethasone, those who did had smaller total brain tissue volumes (mean difference −3.6%, 95% CI [−7.0%, −0.3%], P value = .04) and smaller white matter, thalami, and basal ganglia volumes (all P < .05). There was a trend of smaller total brain and white matter volumes with increasing dose of postnatal dexamethasone (regression coefficient −7.7 [95% CI −16.2, 0.8] and −3.2 [−6.6, 0.2], respectively). CONCLUSIONS: Extremely preterm adolescents who received postnatal dexamethasone in the newborn period had smaller total brain tissue volumes than those who did not receive postnatal dexamethasone, particularly white matter, thalami, and basal ganglia. Vulnerability of brain tissues or structures associated with postnatal dexamethasone varies by structure and persists into adolescence

    Neural correlates of impaired vision in adolescents born extremely preterm and/or extremely low birthweight

    Get PDF
    BACKGROUND: Adolescents born extremely preterm (EP; <28 weeks' gestation) and/or extremely low birthweight (ELBW; <1000 g) experience high rates of visual impairments, however the potential neural correlates of visual impairments in EP/ELBW adolescents require further investigation. This study aimed to: 1) compare optic radiation and primary visual cortical structure between EP/ELBW adolescents and normal birthweight controls; 2) investigate associations between perinatal factors and optic radiation and primary visual cortical structure in EP/ELBW adolescents; 3) investigate associations between optic radiation and primary visual cortical structure in EP/ELBW adolescents and the odds of impaired vision. METHODS: 196 EP/ELBW adolescents and 143 controls underwent magnetic resonance imaging at a mean age of 18 years. Optic radiations were delineated using constrained spherical deconvolution based probabilistic tractography. Primary visual cortices were segmented using FreeSurfer software. Diffusion tensor variables and tract volume of the optic radiations, as well as volume, surface area and thickness of the primary visual cortices, were estimated. RESULTS: Axial, radial and mean diffusivities within the optic radiations, and primary visual cortical thickness, were higher in the EP/ELBW adolescents than controls. Within EP/ELBW adolescents, postnatal corticosteroid exposure was associated with altered optic radiation diffusion values and lower tract volume, while decreasing gestational age at birth was associated with increased primary visual cortical volume, area and thickness. Furthermore, decreasing optic radiation fractional anisotropy and tract volume, and increasing optic radiation diffusivity in EP/ELBW adolescents were associated with increased odds of impaired vision, whereas primary visual cortical measures were not associated with the odds of impaired vision. CONCLUSIONS: Optic radiation and primary visual cortical structure are altered in EP/ELBW adolescents compared with controls, with the greatest alterations seen in those exposed to postnatal corticosteroids and those born earliest. Structural alterations to the optic radiations may increase the risk of impaired vision in EP/ELBW adolescents.Claire E. Kelly, Jeanie L. Y. Cheong, Carly Molloy, Peter J. Anderson, Katherine J. Lee, Alice C. Burnet

    Contribution of brain size to IQ and educational underperformance in extremely preterm adolescents

    Get PDF
    OBJECTIVES:Extremely preterm (EP) survivors have smaller brains, lower IQ, and worse educational achievement than their term-born peers. The contribution of smaller brain size to the IQ and educational disadvantages of EP is unknown. This study aimed (i) to compare brain volumes from multiple brain tissues and structures between EP-born (< 28 weeks) and term-born (≥ 37 weeks) control adolescents, (ii) to explore the relationships of brain tissue volumes with IQ and basic educational skills and whether this differed by group, and (iii) to explore how much total brain tissue volume explains the underperformance of EP adolescents compared with controls. METHODS:Longitudinal cohort study of 148 EP and 132 term controls born in Victoria, Australia in 1991-92. At age 18, magnetic resonance imaging-determined brain volumes of multiple tissues and structures were calculated. IQ and educational skills were measured using the Wechsler Abbreviated Scale of Intelligence (WASI) and the Wide Range Achievement Test(WRAT-4), respectively. RESULTS:Brain volumes were smaller in EP adolescents compared with controls (mean difference [95% confidence interval] of -5.9% [-8.0, -3.7%] for total brain tissue volume). The largest relative differences were noted in the thalamus and hippocampus. The EP group had lower IQs(-11.9 [-15.4, -8.5]), spelling(-8.0 [-11.5, -4.6]), math computation(-10.3 [-13.7, -6.9]) and word reading(-5.6 [-8.8, -2.4]) scores than controls; all p-values<0.001. Volumes of total brain tissue and other brain tissues and structures correlated positively with IQ and educational skills, a relationship that was similar for both the EP and controls. Total brain tissue volume explained between 20-40% of the IQ and educational outcome differences between EP and controls. CONCLUSIONS:EP adolescents had smaller brain volumes, lower IQs and poorer educational performance than controls. Brain volumes of multiple tissues and structures are related to IQ and educational outcomes. Smaller total brain tissue volume is an important contributor to the cognitive and educational underperformance of adolescents born EP

    "If we use the strength of diversity among researchers we can only improve the quality and impact of our research": Issues of equality, diversity, inclusion, and transparency in the process of applying for research funding

    Get PDF
    This paper sets out the recommendations that have emerged from a six-month-long exploration and discussion of the processes that take place before research is submitted for funding: the ‘pre-award’ environment. Our work concentrated on how this environment is experienced by researchers at all career stages and from a variety of backgrounds, demographics, and disciplines, as well as by research managers and research support professionals. In the later stages of our exploration, representatives from research funders were also involved in the discussions. The primary component of this project was an analysis of pre-award activities and processes at UK universities, using information collated from workshops with researchers and research management and support staff. The findings of this analysis were presented as a workflow diagram, which was then used to surface issues relating to equality, diversity, inclusion, and transparency in context. The workflow diagram and the issues highlighted by it were used to structure discussions at a symposium for a range of research stakeholders, held in Bristol, UK, in January 2023. The recommendations set out in this paper are drawn from discussions that took place at that event. This paper is not an exhaustive landscape analysis, nor a review of existing research and practice in the area of pre-award processes or of recent thinking on the topics of equality, diversity, and inclusion (EDI). Instead, it aims to summarise and encapsulate the suggestions put forward by the stakeholders during the symposium. These recommendations, from experienced professionals working in the field, are based on their encounters with the issues raised in the project. They do not solely relate to those working on pre-award processes, but may also apply to funders, policymakers, university leaders, and professional associations, since many of the challenges flagged in our research are systemic and cultural, and reach far beyond the research office

    Fermi Large Area Telescope Constraints on the Gamma-ray Opacity of the Universe

    Get PDF
    The Extragalactic Background Light (EBL) includes photons with wavelengths from ultraviolet to infrared, which are effective at attenuating gamma rays with energy above ~10 GeV during propagation from sources at cosmological distances. This results in a redshift- and energy-dependent attenuation of the gamma-ray flux of extragalactic sources such as blazars and Gamma-Ray Bursts (GRBs). The Large Area Telescope onboard Fermi detects a sample of gamma-ray blazars with redshift up to z~3, and GRBs with redshift up to z~4.3. Using photons above 10 GeV collected by Fermi over more than one year of observations for these sources, we investigate the effect of gamma-ray flux attenuation by the EBL. We place upper limits on the gamma-ray opacity of the Universe at various energies and redshifts, and compare this with predictions from well-known EBL models. We find that an EBL intensity in the optical-ultraviolet wavelengths as great as predicted by the "baseline" model of Stecker et al. (2006) can be ruled out with high confidence.Comment: 42 pages, 12 figures, accepted version (24 Aug.2010) for publication in ApJ; Contact authors: A. Bouvier, A. Chen, S. Raino, S. Razzaque, A. Reimer, L.C. Reye

    Detection of High-Energy Gamma-Ray Emission from the Globular Cluster 47 Tucanae with Fermi

    Get PDF
    Gamma-Ray Pulsar Bonanza Most of the pulsars we know about were detected through their radio emission; a few are known to pulse gamma rays but were first detected at other wavelengths (see the Perspective by Halpern ). Using the Fermi Gamma-Ray Space Telescope, Abdo et al. (p. 840 , published online 2 July; see the cover) report the detection of 16 previously unknown pulsars based on their gamma-ray emission alone. Thirteen of these coincide with previously unidentified gamma-ray sources, solving the 30-year-old mystery of their identities. Pulsars are fast-rotating neutron stars. With time they slow down and cease to radiate; however, if they are in a binary system, they can have their spin rates increased by mass transfer from their companion stars, starting a new life as millisecond pulsars. In another study, Abdo et al. (p. 845 ) report the detection of gamma-ray emission from the globular cluster 47 Tucanae, which is coming from an ensemble of millisecond pulsars in the cluster's core. The data imply that there are up to 60 millisecond pulsars in 47 Tucanae, twice as many as predicted by radio observations. In a further companion study, Abdo et al. (p. 848 , published online 2 July) searched Fermi Large Area Telescope data for pulsations from all known millisecond pulsars outside of stellar clusters, finding gamma-ray pulsations for eight of them. Their properties resemble those of other gamma-ray pulsars, suggesting that they share the same basic emission mechanism. Indeed, both sets of pulsars favor emission models in which the gamma rays are produced in the outer magnetosphere of the neutron star

    Gamma-ray and radio properties of six pulsars detected by the fermi large area telescope

    Get PDF
    We report the detection of pulsed γ-rays for PSRs J0631+1036, J0659+1414, J0742-2822, J1420-6048, J1509-5850, and J1718-3825 using the Large Area Telescope on board the Fermi Gamma-ray Space Telescope (formerly known as GLAST). Although these six pulsars are diverse in terms of their spin parameters, they share an important feature: their γ-ray light curves are (at least given the current count statistics) single peaked. For two pulsars, there are hints for a double-peaked structure in the light curves. The shapes of the observed light curves of this group of pulsars are discussed in the light of models for which the emission originates from high up in the magnetosphere. The observed phases of the γ-ray light curves are, in general, consistent with those predicted by high-altitude models, although we speculate that the γ-ray emission of PSR J0659+1414, possibly featuring the softest spectrum of all Fermi pulsars coupled with a very low efficiency, arises from relatively low down in the magnetosphere. High-quality radio polarization data are available showing that all but one have a high degree of linear polarization. This allows us to place some constraints on the viewing geometry and aids the comparison of the γ-ray light curves with high-energy beam models

    A Population of Gamma-Ray Millisecond Pulsars Seen with the Fermi Large Area Telescope

    Get PDF
    Gamma-Ray Pulsar Bonanza Most of the pulsars we know about were detected through their radio emission; a few are known to pulse gamma rays but were first detected at other wavelengths (see the Perspective by Halpern ). Using the Fermi Gamma-Ray Space Telescope, Abdo et al. (p. 840 , published online 2 July; see the cover) report the detection of 16 previously unknown pulsars based on their gamma-ray emission alone. Thirteen of these coincide with previously unidentified gamma-ray sources, solving the 30-year-old mystery of their identities. Pulsars are fast-rotating neutron stars. With time they slow down and cease to radiate; however, if they are in a binary system, they can have their spin rates increased by mass transfer from their companion stars, starting a new life as millisecond pulsars. In another study, Abdo et al. (p. 845 ) report the detection of gamma-ray emission from the globular cluster 47 Tucanae, which is coming from an ensemble of millisecond pulsars in the cluster's core. The data imply that there are up to 60 millisecond pulsars in 47 Tucanae, twice as many as predicted by radio observations. In a further companion study, Abdo et al. (p. 848 , published online 2 July) searched Fermi Large Area Telescope data for pulsations from all known millisecond pulsars outside of stellar clusters, finding gamma-ray pulsations for eight of them. Their properties resemble those of other gamma-ray pulsars, suggesting that they share the same basic emission mechanism. Indeed, both sets of pulsars favor emission models in which the gamma rays are produced in the outer magnetosphere of the neutron star
    • …
    corecore