204 research outputs found

    The Structure and Properties of Clique Graphs of Regular Graphs

    Get PDF
    In the following thesis, the structure and properties of G and its clique graph clt (G) are analyzed for graphs G that are non-complete, regular with degree δ , and where every edge of G is contained in a t -clique. In a clique graph clt (G), all cliques of order t of the original graph G become the clique graph’s vertices, and the vertices of the clique graph are adjacent if and only if the corresponding cliques in the original graph have at least 1 vertex in common. This thesis mainly investigates if properties of regular graphs are carried over to clique graphs of regular graphs. In particular, the first question considered is whether the clique graph of a regular graph must also be regular. It is shown that while line graphs, cl2(G), of regular graphs are regular, the degree difference of the clique graph cl3(R) can be arbitrarily large using δ -regular graphs R with δ ≥ 3. Next, the question of whether a clique graph can have a large independent set is considered (independent sets in regular graphs can be composed of half the vertices in the graph at the most). In particular, the relation between the degree difference and the independence number of clt (G) will be analyzed. Lastly, we close with some further questions regarding clique graphs

    Towards medhub: A Self-Service Platform for Analysts and Physicians

    Full text link
    Combining clinical and omics data can improve both daily clinical routines and research to gain more insights into complex medical procedures. We present the results of our first phase in a multi-year collaboration with analysts and physicians aiming at improved inter-disciplinary biomarker identification. We also outline our user-centered approach along its challenges, describe the intermediate technical artifacts that serve as a basis for summative and formative evaluation for the second project phase. Finally, we sketch the road ahead and how we intend to combine visualization research with user-centered design through problem-based prioritization.Comment: 2 + 1 page

    Konzeption eines lernorientierten hochschuldidaktischen Qualifikationsprogramms \u27Basic\u27

    Full text link
    Trotz der Verfügbarkeit hochschuldidaktischer Weiterbildungsangebote werden diese nicht von allen Lehrenden besucht. Im Beitrag soll daher gezeigt werden, welche Aspekte (Anforderungen, Lehrkompetenz, eigene Lernerfahrungen und Partizipation) bei einer Konzeptionierung hochschuldidaktischer Weiterbildung berücksichtigt werden sollten, um die Bedürfnisse von Lehrenden anzusprechen. Zusätzlich wird beschrieben, wie diese in einem hochschuldidaktischen Qualifikationsprogramm mit einer lernerorientierten Lernkultur eingebunden werden. (HoF/Text übernommen

    Modeling the variations of Dose Rate measured by RAD during the first MSL Martian year: 2012-2014

    Get PDF
    The Radiation Assessment Detector (RAD), on board Mars Science Laboratory's (MSL) rover Curiosity, measures the {energy spectra} of both energetic charged and neutral particles along with the radiation dose rate at the surface of Mars. With these first-ever measurements on the Martian surface, RAD observed several effects influencing the galactic cosmic ray (GCR) induced surface radiation dose concurrently: [a] short-term diurnal variations of the Martian atmospheric pressure caused by daily thermal tides, [b] long-term seasonal pressure changes in the Martian atmosphere, and [c] the modulation of the primary GCR flux by the heliospheric magnetic field, which correlates with long-term solar activity and the rotation of the Sun. The RAD surface dose measurements, along with the surface pressure data and the solar modulation factor, are analysed and fitted to empirical models which quantitatively demonstrate} how the long-term influences ([b] and [c]) are related to the measured dose rates. {Correspondingly we can estimate dose rate and dose equivalents under different solar modulations and different atmospheric conditions, thus allowing empirical predictions of the Martian surface radiation environment

    Overview of the PALM model system 6.0

    Get PDF
    In this paper, we describe the PALM model system 6.0. PALM (formerly an abbreviation for Parallelized Large-eddy Simulation Model and now an independent name) is a Fortran-based code and has been applied for studying a variety of atmospheric and oceanic boundary layers for about 20 years. The model is optimized for use on massively parallel computer architectures. This is a follow-up paper to the PALM 4.0 model description in Maronga et al. (2015). During the last years, PALM has been significantly improved and now offers a variety of new components. In particular, much effort was made to enhance the model with components needed for applications in urban environments, like fully interactive land surface and radiation schemes, chemistry, and an indoor model. This paper serves as an overview paper of the PALM 6.0 model system and we describe its current model core. The individual components for urban applications, case studies, validation runs, and issues with suitable input data are presented and discussed in a series of companion papers in this special issue

    Value of bronchoscopy after EUS in the preoperative assessment of patients with esophageal cancer at or above the carina

    Get PDF
    Introduction: Esophageal cancer is an aggressive disease with a strong tendency to infiltrate into surrounding structures. The aim of the present study is to determine the additional value of bronchoscopy for detecting invasion of the tracheobronchial tree after endoscopic ultrasonography (EUS) in the preoperative assessment of patients with esophageal cancer at or above the carina. Materials and Methods: Between January 1997 and December 2006, 104 patients were analyzed for histologically proven esophageal cancer at or above the carina. All patients underwent both EUS and bronchoscopy (with biopsy on indication) in the preoperative assessment of local resectability. Results and Discussion: After extensive diagnostic workup, 58 of 104 patients (56%) were eligible for potentially curative esophagectomy; nine of these 58 patients (9/58, 15%) appeared to be incurable peroperatively because of ingrowth in the tracheobronchial tree (five patients), ingrowth in other vital structures (two patients) or distant metastases (two patients). Of the 46 non-operable patients, local irresectability (T-stage 4) was identified in 26 patients (26/46, 57%) due to invasion of vital structures on EUS: invasion of the aorta in six patients, invasion of the lung in 11 patients; in 12 patients invasion of the tracheobronchial tree was described, which was confirmed by bronchoscopy in only five patients. No patients with T4 were identified by bronchoscopy alone. Conclusion: For patients with esophageal tumors at or above the carina, no additional value of bronchoscopy (with biopsy on indication) to exclude invasion of the tracheobronchial tree was seen after EUS in a specialized centre. Although based on relatively small numbers, we conclude that bronchoscopy is not indicated if no invasion of the airways is identified on EUS

    Identification of molecular markers of bipolar cells in the murine retina

    Get PDF
    Retinal bipolar neurons serve as relay interneurons that connect rod and cone photoreceptor cells to amacrine and ganglion cells. They exhibit diverse morphologies essential for correct routing of photoreceptor cell signals to specific postsynaptic amacrine and ganglion cells. The development and physiology of these interneurons have not been completely defined molecularly. Despite previous identification of genes expressed in several bipolar cell subtypes, molecules that mark each bipolar cell type still await discovery. In this report, novel genetic markers of murine bipolar cells were found. Candidates were initially generated by using microarray analysis of single bipolar cells and mining of retinal serial analysis of gene expression (SAGE) data. These candidates were subsequently tested for expression in bipolar cells by RNA in situ hybridization. Ten new molecular markers were identified, five of which are highly enriched in their expression in bipolar cells within the adult retina. Double-labeling experiments using probes for previously characterized subsets of bipolar cells were performed to identify the subtypes of bipolar cells that express the novel markers. Additionally, the expression of bipolar cell genes was analyzed in Bhlhb4 knockout retinas, in which rod bipolar cells degenerate postnatally, to delineate further the identity of bipolar cells in which novel markers are found. From the analysis of Bhlhb4 mutant retinas, cone bipolar cell gene expression appears to be relatively unaffected by the degeneration of rod bipolar cells. Identification of molecular markers for the various subtypes of bipolar cells will lead to greater insights into the development and function of these diverse interneurons

    Quantum state preparation and macroscopic entanglement in gravitational-wave detectors

    Full text link
    Long-baseline laser-interferometer gravitational-wave detectors are operating at a factor of 10 (in amplitude) above the standard quantum limit (SQL) within a broad frequency band. Such a low classical noise budget has already allowed the creation of a controlled 2.7 kg macroscopic oscillator with an effective eigenfrequency of 150 Hz and an occupation number of 200. This result, along with the prospect for further improvements, heralds the new possibility of experimentally probing macroscopic quantum mechanics (MQM) - quantum mechanical behavior of objects in the realm of everyday experience - using gravitational-wave detectors. In this paper, we provide the mathematical foundation for the first step of a MQM experiment: the preparation of a macroscopic test mass into a nearly minimum-Heisenberg-limited Gaussian quantum state, which is possible if the interferometer's classical noise beats the SQL in a broad frequency band. Our formalism, based on Wiener filtering, allows a straightforward conversion from the classical noise budget of a laser interferometer, in terms of noise spectra, into the strategy for quantum state preparation, and the quality of the prepared state. Using this formalism, we consider how Gaussian entanglement can be built among two macroscopic test masses, and the performance of the planned Advanced LIGO interferometers in quantum-state preparation

    Searching for a Stochastic Background of Gravitational Waves with LIGO

    Get PDF
    The Laser Interferometer Gravitational-wave Observatory (LIGO) has performed the fourth science run, S4, with significantly improved interferometer sensitivities with respect to previous runs. Using data acquired during this science run, we place a limit on the amplitude of a stochastic background of gravitational waves. For a frequency independent spectrum, the new limit is ΩGW<6.5×105\Omega_{\rm GW} < 6.5 \times 10^{-5}. This is currently the most sensitive result in the frequency range 51-150 Hz, with a factor of 13 improvement over the previous LIGO result. We discuss complementarity of the new result with other constraints on a stochastic background of gravitational waves, and we investigate implications of the new result for different models of this background.Comment: 37 pages, 16 figure

    Neoadjuvant Chemoradiotherapy for Esophageal Cancer: A Review of Meta-Analyses

    Get PDF
    Background: Most randomized controlled trials (RCTs) that have compared neoadjuvant chemoradiation followed by surgery with surgery alone for locally advanced esophageal cancer have shown no difference in survival between the two treatments. Meta-analyses on neoadjuvant chemoradiation in esophageal cancer, however, are discordant. Methods: For the present study, published meta-analyses on neoadjuvant chemoradiation for esophageal cancer were identified from the PubMed database and critically appraised in order to make a judgment on the applicability of neoadjuvant chemoradiation in clinical practice and decision making. Results: Two of the six meta-analyses examined did not show a significant survival benefit in patients with resectable esophageal cancer. Differences in the studies included and statistical methods applied might account for this. Moreover, there was heterogeneity between the RCTs included in the meta-analyses with regard to the patients included, tumor histology, and radiotherapy and chemotherapy regimes. Also, surgical technique was not uniform. No data on individual patients were available for most meta-analyses. The RCTs included in the meta-analyses were of inadequate sample size. All were started in the nineties, and hence methods for diagnosis, staging, treatment delivery, and outcome measurement reflect clinical practice during that decade. Conclusions: The current data on neoadjuvant chemoradiation for esophageal cancer strongly indicate the need for designing future high-quality trials that will contribute to a better understanding of the role of neoadjuvant treatment for resectable cancer of the esophagus and help to identify patient subgroups that would benefit most
    corecore