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ABSTRACT

THE STRUCTURE AND PROPERTIES

OF CLIQUE GRAPHS OF REGULAR GRAPHS

by Jan Burmeister

December 2014

In the following thesis, the structure and properties of G and its clique graph clt(G)

are analyzed for graphs G that are non-complete, regular with degree δ , and where every

edge of G is contained in a t-clique. In a clique graph clt(G), all cliques of order t of the

original graph G become the clique graph’s vertices, and the vertices of the clique graph are

adjacent if and only if the corresponding cliques in the original graph have at least 1 vertex

in common. This thesis mainly investigates if properties of regular graphs are carried over

to clique graphs of regular graphs. In particular, the first question considered is whether

the clique graph of a regular graph must also be regular. It is shown that while line graphs,

cl2(G), of regular graphs are regular, the degree difference of the clique graph cl3(R) can be

arbitrarily large using δ -regular graphs R with δ ≥ 3. Next, the question of whether a clique

graph can have a large independent set is considered (independent sets in regular graphs can

be composed of half the vertices in the graph at the most). In particular, the relation between

the degree difference and the independence number of clt(G) will be analyzed. Lastly, we

close with some further questions regarding clique graphs.
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Chapter 1

INTRODUCTION

1.1 Definitions

This thesis is concerned with problems from an area of mathematics called graph theory.
To begin, essential terms and definitions that will be used throughout the entire thesis are
provided. In notation, we will follow West [10].

Let G = (V,E) be a graph with vertex set V (G) and edge set E(G). The order of G

is |G| = |V (G)| = n, that is, the number of vertices in G. Let u ∈ V (G) be a vertex of G.
Then NG(u) stands for the neighborhood of G (vertices in the neighborhood are called the
neighbors of u), that is, the set of vertices of G adjacent to u excluding u itself. The degree

of a vertex u of a graph G is the number of edges adjacent to u and is denoted by d(u). A
path in a graph G on n vertices, denoted by Pn, is a sequence of edges which connect a
sequence of vertices which are all distinct from one another. A cycle of a graph G on n

vertices, denoted by Cn, is a subset of the edge set of G that forms a path such that the first
vertex of the path corresponds to the last. A regular graph is a graph where each vertex
has the same number of neighbors. A regular graph with vertices of degree δ is called a
δ -regular graph. The minimum degree of G is denoted by δ (G). The maximum degree ∆(G)

of G is the maximum number of neighbors of any vertex in that graph.
A graph H = Gc on the same vertices as graph G, such that 2 distinct vertices of H are

adjacent if and only if they are not adjacent in G, is called the complement of the graph G.
A complete graph is a graph in which every pair of distinct vertices is connected by an edge.
A complete graph on n-vertices is denoted by Kn. A set S with property P is maximal (with
respect to P) if no set S′ exists with S properly contained in S′ such that S′ has property P. A
set S with property P is maximum (with respect to P) if no set S′ exists with |S|< |S′| such
that S′ has property P.

A subgraph is a graph G′ whose vertices and edges form subsets of the vertices and
edges of a given graph G. A set of subgraphs of G is vertex-disjoint if no 2 of them have
any common vertex in G. An edge-induced subgraph is a subset of the edges of a graph
G together with any vertices that are their endpoints. An induced subgraph of a graph (or
vertex-induced subgraph) is a subset of vertices, with all the edges between those vertices
that are present in the larger graph. An induced subgraph that is a complete graph is called a
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clique. A clique of order t is called t-clique. A maximal clique is a clique that cannot be
extended by including 1 more adjacent vertex, meaning it is not a subset of a larger clique. A
maximum clique is a clique of the largest possible size in a given graph. The clique number

ω(G) of a graph G is the order of the largest clique in that graph.
In a clique graph cl(G), all maximal cliques of the original graph G become vertices of

cl(G). In this thesis, a slightly different definition for the clique graph will be used. Namely,
in a clique graph clt(G), all cliques of order t of the original graph G become vertices of
the clique graph. In either case, the vertices of the clique graph are adjacent if and only
if the corresponding cliques in the original graph have at least 1 vertex in common. For
example, in Figure 1.1, the maximal clique of G is of order 3, which is a triangle. Therefore,
all triangles in G become vertices in cl(G). In contrast, for clt(G), if t = 2 is selected, then
all cliques of order 2 become vertices in the clique graph. Neighboring cliques are t-cliques
that share at least 1 vertex in the original graph G and whose corresponding vertices in
clt(G) will therefore be adjacent.

Figure 1.1: Comparison between cl(G) and clt(G)

An independent set is a set of vertices in a graph G of which no pair is adjacent. An
independent set S ⊂ V (G) such that S+ v is no longer an independent set for any choice
of v ∈V (G)−S is called a maximal independent set. The independence number α(G) of
a graph G is the order of the largest independent set of G. A dominating set S ⊆V (G) in
a graph G is a subset of the vertices, such that for every vertex v ∈V (G), either v ∈ S, or
NG(v)∩S 6= /0 (there is a neighbor of v contained in S). A dominating vertex is a vertex in G

that has degree n−1. An independent dominating set S⊆V (G) in a graph G is a dominating
set that is additionally independent, i.e., for any vertices u,v ∈ S, (u,v) /∈ E(G). The order
of the smallest independent dominating set is called the independent domination number,
and is denoted by i(G). Note that any maximal independent set is also an independent
dominating set.

The chromatic number χ(G) of a graph G is the minimum number of colors needed to
assign colors to the vertices in G, so adjacent vertices have different colors. The ceiling of
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the number x, denoted by dxe, is the smallest integer greater than or equal to x. Similarly,
the floor of the number x, denoted by bxc, is the greatest integer less than or equal to x.

1.2 Main topic

In particular, this thesis is concerned with the structure and properties of clt(G) of
δ -regular graphs G where every edge of G is contained in a t-clique.

Figure 1.2: Graph H with δ = 5 and its corresponding clique graph cl4(H)

Figure 1.3: Graph J with δ = 7 and its corresponding clique graph cl4(J)

In order to clarify the topic and the definitions, 2 graphs H (Figure 1.2) and J (Figure
1.3) that meet the following conditions and their respective clique graphs are now provided:

• G is δ -regular,

• G is non-complete,

• Every edge of G is in a clique of order t,

• t is close to δ .

In contrast, the graphs and their respective clique graphs in Figures 1.4, 1.5, and 1.6 that
do not meet 1 of the criteria are presented. Although the focus of this thesis’ analysis is not
on these graphs, they are now added in order to clarify the topic and the stated conditions.
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First of all, the following graph L (Figure 1.4) is not regular and therefore does not meet
the first criterion.

Figure 1.4: Non-regular graph L with degrees 6 and 7 and its corresponding clique graph
cl4(L)

Figure 1.5: Complete graph M = K5 and its corresponding clique graph cl3(M) = K10

Second, the graph M (Figure 1.5) is the complete graph on 5 vertices, K5, and therefore
does not meet the second criterion.

Figure 1.6: Graph N where not every edge is in a clique of size t = 3 and its corresponding
clique graph cl3(N)
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Third, in the graph N (Figure 1.6), not every edge is in a clique of order t = 3. Therefore,
N does not meet the third criterion.

The analysis focuses on graphs that meet the outlined conditions due to the following
reasons: Whereas complete graphs are too easy to analyze, non-regular graphs may not
have much structure in their clique graphs. Therefore, the analysis focuses on non-complete
and regular graphs. Furthermore, as seen in Figure 1.6, if not every edge is contained in
a t-clique, a lot of information about all the edges of G that are not in a t-clique is lost in
clt(G). Lastly, if t is close to δ , the results, namely the clique graph clt(G), reveal a lot of
information about the structure about the original graph G.

Remark: While the analysis of the clique graph cl3(N) (Figure 1.6) would not be
considered (since not every edge in N is in a 3-clique), the clique graph cl2(N) is since every
edge of N is in a 2-clique.

As you might have observed, all of the clique graphs in Figures 1.2, 1.3, 1.4, 1.5, and
1.6 are regular. This raises some of the following questions: Will all clique graphs be
regular? What are the implications of the regularity condition on the independence number
of the clique graph? What are the consequences on the results of the first 2 questions if t is
changed? If the clique graph is a clique, does the original graph G have to be a clique?

Such questions concerning the structure and properties of clique graphs (of graphs that
meet the stated criteria) and their discussions’ implications on the original graphs will be
addressed in the following chapters.

1.3 Literature review

1.3.1 Characteristics of regular graphs and their corresponding clique graphs

Lyle [7] considered upper bounds on the independent domination number of G, i(G),
for regular graphs with large degrees. First of all, regarding the independent domination of
regular graphs, Lyle’s main result is the following theorem: Let G be a δ -regular graph such
that Gc is connected, and k be any integer. Then,

i(G)≤


(3

5

)
(n−δ ), if 1

6n < δ < 1
4n,(5

8

)
(n−δ ), if 1

4n < δ < (n−8), and δ 6= k−3
k n (for k ≥ 4),(2

k

)
n, if δ = k−3

k n (for k ≥ 4)
(1.1)

In the following, all 3 cases are illustrated. Recall that the order of the smallest inde-
pendent dominating set is called the independent domination number and is denoted by
i(G).
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First of all, let n = 10. Then, if 1
6n < δ < 1

4n, let δ = 2. We see that C10’s (Figure 1.7)
i(G) = 4 does satisfy i(G)≤ 3

5(n−δ ) = 3
5(10−2) = 4.8.

Figure 1.7: Graph G =C10 with i(G) = 4

For the second case, let n = 13. Since 1
4n < δ < (n−8), let δ = 4. Then, we have to

ensure that, for any k ≥ 4, δ = 4 6= k−3
k n. If k = 4, then k−3

k n = 3.25 6= 4 and if k = 5,then
k−3

k n = 5.2 6= 4. Since for any k > 5, k−3
k n > 5.2, for any k ≥ 4, δ = 4 6= k−3

k n holds true.
Therefore, let n = 13 and δ = 4 (Figure 1.8) in order to illustrate the second case. Lyle’s
theorem states that i(G)≤ 5

8(n−δ ) = 5
8(13−4) = 5.625. In this case, i(G) = 3 illustrates

the theorem.

Figure 1.8: Graph G with n = 13, δ = 4 and i(G) = 3

For the third case, let n = k = 10. Then, δ = k−3
k n = 10−3

10 · 10 = 7. This resulting
graph’s independent domination number is bounded above by i(G)≤ 2

k n = 2
10 ·10 = 2. The

graph in Figure 1.9 illustrates this as i(G) = 2.
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Figure 1.9: Graph G with n = k = 10, δ = 7 and i(G) = 2

Second, Lyle proved the following: Let G be a δ -regular graph such that every edge is
in a t-clique and Gc is connected and clt(G) has a dominating vertex. Then, t ≤ 3

5(δ +1).
Third, Lyle proved that if G is a connected, δ -regular graph with t > 3

5(δ + 1), then
there is some k≥ 4, such that clt(G) contains an induced copy of Ck. The following graph G

with δ = 8 and its clique graph cl6(G) (Figure 1.10) serve as an example. In this example,
t = 6 > 3

5(δ +1) = 3
5(8+1) = 5.4 and cl6(G) does contain an induced copy of C7. So, the

conditions hold.

Figure 1.10: Graph G with δ = 8 and its corresponding clique graph cl6(G) =C7

1.3.2 Clique partition problems

The next topic considered is clique partitions, specifically with disjoint copies of K3

(triangles).
Corradi and Hajnal [2] proved that if G is a graph of order n = 3k with δ (G)≥ 2k, then

G contains k disjoint triangles. For instance, graph G (Figure 1.11) with n = 3k = 3 ·2 = 6
and δ (G)≥ 2k = 2 ·2 = 4 has k = 2 disjoint triangles. Furthermore, Dirac [3] proved that
if G is a graph of order n≥ 3k with δ (G)≥ n+k

2 , then G contains k disjoint triangles. For
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instance, graph G (Figure 1.12) with n ≥ 3k = 3 · 3 = 9 and δ (G) ≥ n+k
2 = 9+3

2 = 6 has
k = 3 disjoint triangles.

Figure 1.11: Graph G with n = 6 and δ = 4

Figure 1.12: Graph G with n = 9 and δ = 6

Results exist for other disjoint small cliques, namely K3s and K4s, in a graph. Specifically,
let s and k be 2 integers with 0 ≤ s ≤ k. Yan, Gao, and Zhang [12] proved that if n ≥
3s+ 4(k− s) and d(u)+ d(v) ≥ 3

(n−s
2

)
+ k− 1 for any pair of non-adjacent vertices u,v

of G, then G contains s vertex-disjoint K3s and (k− s) vertex-disjoint K4s, such that all
of them are vertex-disjoint. For instance, graph G (Figure 1.13) with n≥ 3s+4(k− s) =

3 ·2+4 · (3−2) = 10 and d(u)+d(v)≥ 3
(n−s

2

)
+k−1 = 3

(10−2
2

)
+3−1 = 14 has s = 2

vertex-disjoint K3s and (k− s) = (3−2) = 1 vertex-disjoint K4, such that all of them are
vertex-disjoint.

Furthermore, the following example shows that the degree sum condition d(u)+d(v)≥
3
(n−s

2

)
+ k−1 is sharp, that is the right side of the inequality cannot be further decreased.

For example, let G (Figure 1.14) be a 4-cycle. While, for k = s = 1, n ≥ 3s+ 4(k− s)

(⇔ 4≥ 3) holds, the second inequality d(u)+d(v)≥ 3
(n−s

2

)
+ k−1 (⇔ 4≥ 4.5) does not
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Figure 1.13: Graph G with n = 10 and δ = 7

hold. If both inequalities had held, graph G would have had to have s = 1 K3 which is not
true. Therefore, the degree condition is indeed sharp.

Figure 1.14: Graph G with n = 4 and δ = 2

Lastly, for the discussion of the next paper, 2 additional definitions are needed. Since
these definitions are very specific to this particular paper, they are just now introduced.
Namely, let Bc(G) be the maximum number of disjoint maximal cliques in G, and let bc(G)

be the minimum number of disjoint maximal cliques in G, that is no additional cliques
can be added. Figure 1.15 illustrates an example of the definition. The main point of the
paper is to find lower bounds for the maximum and minimum numbers of disjoint maximal
cliques in G. These bounds help to discover lower bounds for the maximum and minimum
numbers of pairwise disjoint maximal independent sets in the graph’s complement. Erdos,
Hobbs, and Payan [4] specifically proved that if graph G has maximum degree k, then
bc(G)≥ 4n

(k+2)2 and Bc(G)≥ 6n
(k+3)2 . Furthermore, if the graph G is regular of degree δ , then

bc(G)≥ 8n
(δ+3)2 .

In the example (Figure 1.15), we have the regular graph G on n = 8 vertices with δ = 3.
Therefore, we get bc(G) ≥ 8n

(δ+3)2 = 1.78. Therefore, we should see at least 2 pairwise
disjoint maximal cliques in the graph. In this case, bc(G) = 3 illustrating the formula.

Furthermore, the authors proved the following: Let G be a graph on n vertices and
minimum degree δ (G) = n− k. If k < −1+ 2

√
n, then G includes 2 disjoint maximal
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Figure 1.15: Bc(G) = 4 and bc(G) = 3

independent sets of vertices. Further, if G is regular of degree δ (G) = n− k and if k <

−2+2
√

2n, then G includes 2 disjoint maximal independent sets of vertices.
For instance, let G =C5. Then, n = 5 and δ (G) = 2. If δ (G) = n− k, then k = 3. Since

k <−1+2
√

n =−1+2
√

5 = 3.47 holds, G should have 2 disjoint maximal independent
sets. Further, since G is regular with degree δ (G) = 2, we can use the same example to test
the other conditions. Again, since k <−2+2

√
2n =−2+2

√
10 = 4.32 holds, G should

have 2 disjoint maximal independent sets, according to the second part of the theorem. The
following illustration (Figure 1.16) confirms the analysis;

Figure 1.16: Graph G =C5 with 2 maximal independent sets

These results concern independent sets in cl(G). We will consider independent sets in
clt(G) in Chapter 3.

1.3.3 Independent set in G

Rabern [8] proved that if G is a graph with ω(G)≥ 3
4(∆(G)+1), then G has an inde-

pendent set I, such that ω(G− I)< ω(G). The basic idea is that for graphs that meet the
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condition, there exists an independent set that contains 1 vertex from each maximum clique.
Then, in G− I, every maximum clique is reduced by 1, and therefore ω(G− I) < ω(G)

holds. In order to illustrate this theorem, let ω(G) = ∆(G) = 3 (Figure 1.17 and Figure 1.18).
In both illustrations, we have ω(G) = 3 and ω(G− I) = 2. Therefore, ω(G− I) < ω(G)

holds. In sum, using the title of the paper, all maximum cliques will be hit by an independent
set.

Figure 1.17: Graph G with ω(G) = ∆ = 3 and graph G− I

Figure 1.18: Graph G with ω(G) = ∆ = 3 and graph G− I

The results of Rabern can be used to discuss Reed’s conjecture. Reed [9] proved that for
every graph G we have χ(G)≤

⌈
ω(G)+∆(G)+1

2

⌉
. If we let the independent set in (G− I) be

maximal, then Reed’s conjecture holds true for graphs with ω(G)≥ 3
4(∆(G)+1). Therefore,

a minimum counterexample to the conjecture satisfies ω(G)< 3
4(∆(G)+1) and also χ(G)>⌈7

6ω(G)
⌉
. The second solution is obtained by substituting ∆ from χ(G)≤

⌈
ω(G)+∆(G)+1

2

⌉
into ω(G)< 3

4(∆(G)+1) and solving for χ(G).

1.3.4 Line graphs

The graphs, cl2(G), for any G are a special kind of graphs, which are called line graphs.
Therefore, the line graph of a graph G is another graph L(G) that represents the adjacencies
between the edges of G. Beineke [1] showed that a graph is a line graph if and only if no
subset of its vertices induces 1 of the 9 subgraphs in Figure 1.19.

For example, the top left forbidden subgraph in Figure 1.19 is a claw, which is a complete
bipartite graph K1,3. A line graph L(G) cannot contain a claw, because if 3 edges e1, e2,



12

Figure 1.19: 9 forbidden subgraphs for line graphs

and e3 in G all share endpoints with another edge e4 (Figure 1.20) then by the pigeonhole
principle (which states that if n items are put into m containers, with n > m, then at least
1 container must contain more than 1 item [6]) at least 2 of e1, e2, and e3 must share 1 of
those endpoints with each other.

Figure 1.20: Why the line graph cl2(G) cannot contain the claw K1,3

Furthermore, for the line graph L(G) of the graph G to exist, a collection of cliques in
the graph L(G) (allowing some of the cliques to be single vertices) exists that partitions the
edges of the graph L(G), such that each vertex of L(G) belongs to exactly 2 of the cliques.
Additionally, for G not to be a multigraph, no 2 vertices of L(G) are both in the same 2
cliques [5]. For instance, the vertex in the center of a claw is in 3 2-cliques, violating the
requirement that each vertex appears in exactly 2 cliques. Thus, any graph that has a claw as
an induced subgraph is not a line graph.
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Chapter 2

REGULARITY OF THE CLIQUE GRAPH

In this section, the variations of the following question will be discussed: Is every clique
graph of a regular graph regular?

2.1 Regularity of line graphs, cl2(G)

To begin, the line graphs, cl2(G), of regular graphs G will be analyzed.

Theorem 2.1.1. The line graph L(G) of a regular graph G is regular.

Proof. Let G be a δ -regular graph. Let L(G) = cl2(G) be the line graph of G. Let
u ∈ E(G). Let v1(u) and v2(u) be the endpoints of the edge u. Let s ∈ V (cl2(G)) be the
vertex of the line graph corresponding to the edge u in G (Figure 2.1). The edge u has the
vertex v1(u) in common with δ −1 edges and the vertex v2(u) in common with δ −1 edges
in G. Therefore, the vertex s of the line graph has degree δ −1+δ −1 = 2δ −2. Therefore,
the line graph cl2(G) is regular.

Figure 2.1: The line graph of a regular graph is regular

2.2 Degree difference of cl3(G) - Preliminary discussion

After having shown that every line graph L(G) of a regular graph G is regular, the clique
graphs cl3(G) of regular graphs G will be analyzed. First of all, the graphs G and their
corresponding clique graphs cl3(G) in Figure 2.2 and Figure 2.3 are examples of non-regular
clique graphs.
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Figure 2.2: 4-regular graph G with its non-regular clique graph cl3(G)

Figure 2.3: Graph G satisfying all 4 conditions with its non-regular clique graph cl3(G)

While not all edges of the graph G in Figure 2.2 are in a 3-clique, the graph G in Figure
2.3 satisfies all of the following 4 conditions, and its clique graph cl3(G) is not regular.

• G is non-complete.

• G is regular.

• Every edge in G is contained in a t-clique.

• t = 3 is close to δ .

Therefore, the clique graphs cl3(G) of graphs G which satisfy (and of graphs G which
do not satisfy) the 4 stated conditions do not necessarily have to be regular.
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In Figure 2.3, the degree difference, which is defined as the difference between the
maximum degree, denoted by ∆(G), and the minimum degree, denoted by δ (G), of the
clique graph cl3(G) is 1, since the green vertices have degree ∆(cl3(G)) = 5 and the red
vertices have degree δ (cl3(G)) = 4.

Therefore, the degree difference of the clique graph can be 0 (if the clique graph is
regular) and 1 (See Figure 2.3). The following question arises: Could the degree difference
of the clique graph cl3(G) be arbitrarily large?

Figure 2.4: Graph G and cl3(G)

To begin, 2 examples are presented for which the degree difference is 2. The graph
in Figure 2.4 satisfies all 4 conditions (regular with degree δ , non-complete, t close to
δ and every edge is in a t-clique) with δ = 4. The red (green) triangle in the original
graph becomes the red (green) vertex in the clique graph. Since the degree of the red
vertex is 5, ∆ = 5, and the degree of the green vertex is 3, δ = 3, the degree difference is
∆(cl3(G))−δ (cl3(G)) = 2.

Similarly, the degree difference of the clique graph of the graph in Figure 2.5 is also 2,
with ∆(cl3(G)) = 5 and δ (cl3(G)) = 3.

Figure 2.5: Graph G

Therefore, we now know that the degree difference of the clique graph can be 0, 1, or 2.
In order to answer the original question (“Could the degree difference of the clique graph be
arbitrarily large?”), we need to build graphs where 1 triangle (3-clique) shares a vertex with
many triangles. Table 2.1 summarizes the maximal values that ∆(clt(G)) can assume, for
given δ (G), when G is a complete graph.
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δ (G) n(G) Original graph G n(cl3(G)) ∆(cl3(G)) ∆

n
1 2 K2 0
2 3 K3 1
3 4 K4 4 3 0.75
4 5 K5 10 9 0.90
5 6 K6 20 18 0.90
6 7 K7 35 30 0.86
7 8 K8 56 45 0.80
8 9 K9 84 63 0.75
9 10 K10 120 84 0.70

10 11 K11 165 108 0.65

Table 2.1: How to maximize ∆(cl3(G))

In order to find the values for the 4th column in Table 2.1, the number of triangles in G,(n(G)
3

)
is calculated. Similarly, in order to find the values for the fifth column, ∆(cl3(G)),

(
(n(G)

3

)
−1)−

(n(G)−3
3

)
is calculated. This table indicates, for instance, for δ = 5, for any

graph G, ∆(cl3(G)) is likely less than 18. It may be beneficial to consider graphs G where
∆(cl3(G)) is as close to these values as possible. Recall that the goal is to maximize the
degree difference.

For instance, if 1 of the 2 graphs in Figure 2.6 is a subgraph of a larger graph G with
δ = 5, we have ∆(cl3(G)) ≥ 10 because the red triangle has at least 1 vertex in common
with 10 other triangles; therefore, the corresponding vertex in the clique graph will have
degree 10. This value for the maximum degree of the clique graph is relatively close to the
upper bound for δ = 5 which is 18.

Figure 2.6: Subgraph G′ and H ′

Furthermore, if the graph G′ in Figure 2.7 is a subgraph of a larger graph G with δ = 5,
we have ∆(cl3(G)) ≥ 12, since the red triangle shares a vertex with 12 other triangles (9
from K5 and 3 from K4) in the subgraph G′; therefore, the corresponding red vertex in the
clique graph will have degree ≥ 12.
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Figure 2.7: Subgraph G′

Although more and more subgraphs G′ where ∆(cl3(G′)) is close to 18 can be found, it
is sometimes extremely difficult to build a graph G that contains G′. This fact is primarily
due to the fact that G has to satisfy the 4 conditions. The conditions that G has to be regular
and that every edge in G has to be in a 3-clique are particularly difficult to satisfy for most
such graphs. Additionally, even if a graph G (that contains G′ and satisfies all 4 conditions)
is found, the minimum degree of the clique graph, δ (cl3(G)), should be made as small as
possible.

The graph in Figure 2.8 does satisfy all 4 conditions, and ∆(cl3(G)) is as large as possible
(1) while keeping δ (cl3(G)) as low as possible (2). Namely, for (1), the red triangle shares
a vertex with as many triangles as possible (13) and thereby bounding the maximum degree
below, ∆(cl3(G))≥ 13, and, for (2), the green triangle shares a vertex with as few triangles
as possible (6) and thereby bounding the minimum degree above, δ (cl3(G))≤ 6. Therefore,
the graph illustrates an example where the degree difference is at least 7, ∆− δ ≥ 7, for
δ = 5.

Figure 2.8: Graph G whose clique graph’s degree difference is 7 for δ = 5

In sum, when building graphs with the purpose of maximizing the degree difference, we
want graphs where 1 triangle shares a vertex with as many other triangles as possible (in
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order to maximize ∆(cl3(G))), and 1 triangle that shares a vertex with as few triangles as
possible (in order to minimize δ (cl3(G))).

At the beginning of the discussion, the following question was asked: Could the degree
difference of the clique graph cl3(G) be arbitrarily large? An example for the degree
difference to be 7 for δ = 5 was found (Figure 2.8). This example gives evidence to support
the conjecture that the degree difference of cl3(G) can be arbitrarily large, and this is shown
in the next sections for δ = 3 and δ > 3.

2.3 Degree difference of cl3(G) using 3-regular graphs

While the strategy of maximizing the degree difference by building graphs where
∆(cl3(G)) is as large as possible and δ (cl3(G)) is as small as possible certainly makes sense,
these graphs that are built in the previous section do not have a common structure. Therefore,
it is very difficult to prove that the clique graph’s degree difference can be arbitrarily large
by using these examples. In contrast, the following discussion illustrates 3 steps that can
be followed in order to easily build a graph whose clique graph can serve as an example
to demonstrate that the degree difference can be made arbitrarily large. At the end of the
discussion, formulas for calculating ∆(cl3(G)), δ (cl3(G)) and the degree difference will be
derived and analyzed.

In the following, the 3 steps to build graphs whose clique graph’s degree difference is
arbitrarily large are presented:

1. Let δ = 3. Let k ≥ 6, k be even and 3
2k be an integer.

2. Build 2, disconnected 3-regular graphs Gk and Hk on k = nG = nH vertices.

• We will construct Gk to be triangle-free. In order to build the triangle-free
graph Gk, begin with the cycle Ck and number the vertices of V (Gk). Then,
pair each odd numbered vertex with an even numbered vertex. Since no 2 even
numbered vertices are adjacent (and no 2 odd numbered vertices are adjacent),
Gk is triangle-free.

• We will construct Hk to have exactly 2 disjoint triangles. In order to build graph
Hk, begin with the cycle Ck and number the vertices of V (Hk). Then, connect
vertices 1 and 3 and vertices n

2 +1 and n
2 +3. Add an edge between v2 and v2+ n

2
.

If there are vertices vk (for k ≤ n
2 ) with degree δ −1 remaining, then add edges

between v4, ..., vk and vk+ n
2
. The resulting graph H contains 2 triangles which

do not share a common vertex.
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3. Add all edges of the form (u,v) where u ∈V (Gk) and v ∈V (Hk). The resulting graph
Rk is going to have nR = 2k vertices and degree δR = k+3.

The graph Rk in Figure 2.9 is built by using these 3 steps. Every graph R on nR vertices
that is built by using these 3 steps has the following 3 key structural features.

1. The subgraph Gk of Rk has no triangles.

2. The subgraph Hk of Rk has exactly 2 triangles.

3. Graph Rk satisfies 3 of the 4 conditions - δ -regular, non-complete, and every edge is
in a 3-clique.

Figure 2.9: Graph R (δR = 19, nR = 32) consisting of G and H

An example of R on 12 vertices (Figure 2.10) will be analyzed in order to construct
the general formulas for calculating ∆(cl3(R)), δ (cl3(R)), and the degree difference. These
formulas will be used to prove that the degree difference of the clique graph can indeed be
arbitrarily large.

Figure 2.10: Graph R (δR = 9, nR = 12) consisting of G and H

Since we are interested in the degree difference of cl3(R), we will choose different
triangles in R (that will turn into vertices in cl3(R)) and count the triangles with whom they
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share at least 1 vertex, which we will call neighboring triangles. The number of neighboring
triangles defines their corresponding vertex’s degree in cl3(R). Then, in order to provide
a bound on the degree difference in cl3(R), we will choose 2 particular triangles: the one
with many neighboring triangles (for a lower bound on ∆(cl3(R))) and the one with fewer
neighboring triangles (for an upper bound on δ (cl3(R))).

Figure 2.11: 4 different types of triangles in R

For the graph R in Figure 2.11, we can consider 4 different types of triangles whose
neighboring triangles we are going to count in order to find their corresponding vertex’s
degree in cl3(R). Let the base of a triangle be defined as the edge, such that both vertices are
in G or in H except for the 2 triangles whose vertices are all in H. Let the apex of a triangle
be defined as the vertex corresponding to the base of a triangle.

• Type 1: The vertices of the triangle are in H.

• Type 2: The base of the triangle is in H and its apex in G. A type 2 triangle shares a
vertex with 2 triangles in H.

• Type 3: The base of the triangle is in G and its apex in H.

• Type 4: The base of the triangle is in H and its apex in G. A type 4 triangle shares a
vertex with 1 triangle in H.

In the following, the neighboring triangles of a type 1 triangle (Figure 2.12) are counted.
First of all, if we let the base of the neighboring triangle be in H, then we have 3

possibilities as to how the base of the neighboring triangle is related to a type 1 triangle.

1. The base of the neighboring triangle is an edge of the chosen triangle (Figure 2.13,
1.). In this case, we have 3 edges of the chosen triangle that can serve as a base of the
neighboring triangle. At the same time, we have 6 vertices in G that can serve as an
apex of the neighboring triangle. Therefore, we have 6 ·3 = 18 neighboring triangles.
In Rk (for δ = 3), there would be 3k neighboring triangles.
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Figure 2.12: Type 1: The vertices of the triangle are in H

Figure 2.13: Type 1: Base of the neighboring triangle in H

2. The base of the neighboring triangle shares 1 vertex with the chosen triangle (Figure
2.13, 2.). In this case, since δ = 3 and 2 edges of the chosen triangle are used to build
the triangle, we have 1 edge per vertex of the chosen triangle that can serve as the
base of a neighboring triangle. As seen before, we have 6 vertices in G that can serve
as an apex of the neighboring triangle. Therefore, we have 1 ·3 ·6 = 18 neighboring
triangles. In Rk (for δ = 3), we have (δ −2) ·3 · k = 3k neighboring triangles.

3. The base of the triangle does not share an edge or a vertex with the chosen triangle
(Figure 2.13, 3.). Then, no neighboring triangles can be built.

Secondly, if we let the base of the neighboring triangle be in G, then we have 1 possibility
how the base of the neighboring triangle is related to a type 1 triangle.

1. The base of the neighboring triangle does not share an edge or a vertex with the chosen
triangle (Figure 2.14, 1.) (because the neighboring triangle’s base is in G and the
chosen triangle is in H). Therefore, for every base in G (whose number is equivalent
to the number of edges in G), the apex of the neighboring triangle has to be 1 of the 3
vertices of the chosen triangle. Since there are 3·6

2 = 9 edges in G, we have 9 ·3 = 27
neighboring triangles. In Rk (for δ = 3), we have δk

2 ·3 = 9
2k neighboring triangles.
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Figure 2.14: Type 1: Base of the neighboring triangle in G

Altogether, each of the 2 triangles in H has 18+18+27 = 63 triangles with whom it
shares at least 1 common vertex (neighboring triangles). This implies that the vertex (in
cl3(R)) corresponding to a type 1 triangle has degree = 63, and that δ (cl3(Rk))≤ 63.

Subsequently, the neighboring triangles of a type 2 triangle (Figure 2.15) are counted.

Figure 2.15: Type 2: The base of the triangle is in H and its apex in G

First of all, if we let the base of the neighboring triangle be in G, then we have 2
possibilities as to how the base of the neighboring triangle is related to the type 2 triangle.

1. The base of the neighboring triangle shares 1 vertex with the type 2 triangle (Figure
2.16, 1.). Therefore, the apex of the neighboring triangle can be any vertex in H. In
this case, we have 3 ·6 = 18 neighboring triangles. In Rk (for δ = 3), we have δk = 3k

neighboring triangles.

Figure 2.16: Type 2: Base of neighboring triangle in G
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2. The base of the neighboring triangle does not share an edge or a vertex with the type
2 triangle (Figure 2.16, 2.). Since we have a total of 9 edges in G and 3 edges are
already used in 1., we have 6 edges that can serve as the base of a neighboring triangle.
For all these 6 bases, the apex has to be 1 of the 2 vertices of the type 2 triangle in
H in order for the resulting triangle to be a neighboring triangle. In this case, we
have 6 ·2 = 12 neighboring triangles. In Rk (for δ = 3), we have (δk

2 −δ ) ·2 = 3k−6
neighboring triangles.

Secondly, if we let the base of the neighboring triangle be H, then we have 3 possibilities
as to how the base of the neighboring triangle is related to the type 2 triangle.

1. The base of the neighboring triangle is the edge between the 2 type 2 triangle’s
vertices that are in H (Figure 2.17, 1.). The vertices of G can serve as the apex of the
neighboring triangle. Since taking 1 of these vertices as the apex would result in the
type 2 triangle, and therefore must be neglected, we can build exactly 5 neighboring
triangles. In Rk (for δ = 3), we have k−1 neighboring triangles.

Figure 2.17: Type 2: Base of the neighboring triangle in H

2. The base of the neighboring triangle shares a vertex with either 1 of the type 2
triangle’s vertices (Figure 2.17, 2.). Since 1 edge is already taken for connecting
the 2 vertices, we have 2 possible bases for each of the 2 vertices. Each of these 4
bases is paired with any of the 6 vertices from G that serve as apex of the neighboring
triangles. Therefore, we have 2 ·2 ·6 = 24 neighboring triangles. In Rk (for δ = 3),
(δ −1) · k ·2 = 4k neighboring triangles.

3. The base of the neighboring triangle does not share an edge or a vertex with the type 2
triangle (Figure 2.17, 3.). Since we have 9 edges in H and 1+4 = 5 edges are already
used in 1. and 2., we have 4 edges left that can serve as bases of a neighboring triangle.
In order to be a neighboring triangle, the corresponding top of the triangle must be the
type 2 triangle’s vertex in G. Therefore, we have 4 ·1 = 4 neighboring triangles. In
Rk (for δ = 3), we have (δk

2 − (2δ −1)) = 3
2k−5 neighboring triangles.
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Altogether, for the type 2 triangle, we have 18+ 12+ 5+ 24+ 4 = 63 neighboring
triangles which contain an edge from Gk to Hk. Since the type 2 triangle also shares a vertex
with the 2 triangles in H (Figure 2.15), the total number of neighboring triangles of the type
2 triangle is 63+2 = 65. A similar analysis gives the values for the type 3 and 4 triangles
(which is 64). This implies that the vertex in cl3(Rk) corresponding to the type 2 triangle
has degree = 65, and that ∆(cl3(Rk))≥ 65. Therefore, the degree difference of cl3(Rk) is
65−63 = 2 since δ (cl3(Rk))≤ 63 (from type 1 triangle) and ∆(cl3(Rk))≥ 65 (from type 2
triangle).

While this finding is not very impressive (since a larger degree difference is found in
Figure 2.8) the process of building the graph R and of counting the neighboring triangles for
different initial triangles serves as a great starting point for having a structured approach
for coming up with examples of graphs for which the clique graph’s degree difference is
arbitrarily large. On the following pages, we will come up with bounds on δ (cl3(Rk)),
∆(cl3(Rk)) and the degree difference, ∆−δ , that will allow us to easily and quickly build
graphs for any desired clique graph’s degree difference.

As long as k = nG = nH ≥ 6 and k is even, independent on the k we choose, the process
of deriving the number of neighboring triangles for the type 1, 2, 3 and 4 triangles in Rk is
exactly the same. Based on this observation, formulas to count the number of neighboring
triangles which contain an edge from Gk to Hk will be derived.

First, consider a type 2 triangle (Figure 2.15). Let δ = δG = δH = 3 and k = nG = nH =
nR
2 . Let X be the number of neighboring triangles (which contain an edge from Gk to Hk) of

a type 2 triangle. Then, we have

X = δk+
((

δk
2

)
−δ

)
·2+(k−1)+(δ −1) · k ·2+

((
δk
2

)
− (2δ −1)

)
,

=

(
9
2

)
δk−4δ − k,

=

(
25
2

)
k−12. (2.1)

In the previous discussion (Figure 2.15), we manually counted 63 neighboring triangles
for the type 2 triangle. In this case, we have k = 6, so the equation (2.1) 25

2 k− 12 =
25
2 ·6−12 = 63 confirms the number of neighboring triangles which contain an edge from

Gk to Hk.
Secondly, consider a type 1 triangle (Figure 2.12). Let δ = δG = δH = 3 and k = nG =

nH = nR
2 . Let Y be the number of neighboring triangles (which contain an edge from Gk to

Hk) of a type 1 triangle. Then, for δ = 3, we have
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Y = 3k+(δ −2) ·3k+
(

δk
2

)
·3,

=

(
9
2

)
· kδ −3k,

=

(
9
2

)
· k ·3−3k,

=

(
21
2

)
k. (2.2)

In the previous discussion (Figure 2.12), we manually counted 63 neighboring triangles
for the type 1 triangle. In this case, we have k = 6, so the equation (2.2) 21

2 k = 21
2 ·6 = 63

confirms the number of neighboring triangles which contain an edge from Gk to Hk.
After having derived the formulas for X and Y , further analysis will be done. First of all,

the following question will be answered: What are the conditions on k for X ≥ Y ? Using
equations 2.1 and 2.2 for X and Y respectively, we can solve to find

25
2

k−12≥ 21
2

k,

25k−24≥ 21k,

4k ≥ 24,

k ≥ 6.

Therefore, if k = 6, then X = Y . For Rk in Figure 2.10 (where k = 6), we found that
X = Y = 63 which confirms the analysis. If k > 6, X is always going to be greater than
Y . This implies that, if k > 6, the number of neighboring triangles (which contain an edge
from Gk to Hk) of the type 2, 3, and 4 triangles (Figure 2.15) will always be greater than
the number of neighboring triangles (which contain an edge from Gk to Hk) of the type 1
triangle (Figure 2.12).

Finally, let ∆(cl3(Rk)) = X + x and δ (cl3(Rk)) = Y + y where x and y are the number of
the chosen type triangle’s neighboring triangles in H. For instance, recall that X =Y = 63 in
Figure 2.11. Since a type 2 triangle has 2 neighboring triangles in H, x = 2 and ∆(cl3(Rk)) =

63+2 = 65. In contrast, since a type 1 triangle has 0 neighboring triangles in H, y = 0 and
δ (cl3(Rk)) = 63+0 = 63.

Furthermore, independent on the choice of k, the maximum degree in the clique graph
will always be ∆(cl3(R))≥ X +2 while the minimum degree will always be δ (cl3(R))≤
Y + 0 for type 2 and type 1 triangles, respectively. This generalization is only possible
because the process of building Rk is strictly defined by the 3 steps process which results
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in Rk that contains the triangle-free subgraph Gk and the subgraph Hk that contains 2
vertex-disjoint triangles (Figure 2.9, 2.10).

Therefore, the degree difference formula for cl3(Rk) (using equation 2.1 for X and
equation 2.2 for Y ) is

∆−δ = (X +2)− (Y +0),

= (
25
2

k−12+2)− (
21
2

k),

= 2k−10. (2.3)

We previously found that the degree difference is 2 for Figure 2.10 (where k = 6) which
is confirmed by equation 2.3.

The degree difference formula 2.3 implies that as k increases, the degree difference in
cl3(Rk) also increases. Ultimately, the previous discussion implies that the degree difference
of cl3(Rk) can be arbitrarily large for Rk on 2k vertices, with δR = k+3 and where every
edge of Rk is in a 3-clique.

2.4 Degree difference of cl3(G) using δ -regular graphs, for δ > 3

In the following, we will construct Rk in such a way that for any δ > 3, the degree
difference will be arbitrarily large.

1. Let δ > 3. Let k ≥ 6δ −8, k be even and kδ

2 be an integer.

2. Build 2, disconnected δ = δG = δH-regular graphs Gk and Hk on k = nG = nH vertices.

• We will construct Gk to be triangle-free. In order to build the triangle-free graph
Gk, begin with the cycle Ck and number the vertices of V (Gk). Then, in addition
to the edges of the cycle, pair each odd numbered vertex vk with the next δ −2
even numbered vertices. Since no 2 even numbered vertices are adjacent (and
no 2 odd numbered vertices are adjacent), G is triangle-free. In sum, Gk is a
δ -regular, bipartite graph (Figure 2.18).

• We will construct Hk to have triangles. In order to build graph Hk, begin with
the cycle Ck and number the vertices of V (Hk). Add the missing edges to build
2 copies of Kδ in Hk by using the vertices v1, ... , vδ and v k

2+1, ... , v k
2+δ

. For all
vertices vs (s < δ ) (in the first copy of Kδ ) that have degree δ −1, add the edge
between vs and vs+ k

2
. Lastly, connect odd numbered vertices to even numbered
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Figure 2.18: How to build the triangle-free graph Gk for k = 16 and δ = 4

vertices until all vertices in Hk have degree δ . The resulting graph Hk contains 2
complete subgraphs on the top and bottom and no triangles in the center.

3. Add all edges of the form (u,v) where u ∈V (Gk) and v ∈V (Hk). The resulting graph
Rk is going to have nR = 2k vertices and degree δR = k+δ .

Figure 2.19: Graph Rk with δ = 4 and k = 16

For example, the graph Rk with δ = 4 and k = 16 in Figure 2.19 is built by following
these steps.

A similar analysis as in section 2.3 gives the number of neighboring triangles (which
contain an edge from Gk to Hk) of a type 1 triangle(

9
2

)
kδ −3k,
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and of a type 2 triangle (
9
2

)
kδ −4δ − k,

for δ > 3. Therefore, for δ = 4 and k = 16, the red triangle (type 1 triangle) in Figure 2.19
has 9

2 ·16 ·4−3 ·16 = 240 neighboring triangles (which contain an edge from Gk to Hk),
and the green triangle (type 2 triangle) has 9

2 ·16 ·4−4 ·4−16 = 256 neighboring triangles.
If the number of neighboring triangles coming from Hk is neglected, the degree difference
in cl3(Rk) is 256−240 = 16.

However, in contrast to the section 2.3, the number of the neighboring triangles coming
from Hk does play a significant role. The green, type 2 triangle has

2 ·
((

δ

3

)
−
(

δ −1
3

))
neighboring triangles coming from Hk, whereas the red, type 1 triangle has(

δ

3

)
−
(

δ −3
3

)
−1

neighboring triangles coming from Hk.
In sum, for k = 16 and δ = 4, the green, type 2 triangle in Figure 2.19 has a total of

9
2kδ −4δ − k+2 · (

(
δ

3

)
−
(

δ−1
3

)
) = 256+6 = 262 neighboring triangles in Rk, whereas the

red, type 1 triangle has a total of 9
2kδ −3k+

(
δ

3

)
−
(

δ−3
3

)
−1 = 240+3 = 243 neighboring

triangles in Rk with degree difference 262− 243 = 19. Therefore, the degree difference
in the clique graph cl3(Rk) is increased by 6− 3 = 3 when considering the neighboring
triangles coming from Hk.

Table 2.2 compares the number of neighboring triangles in Hk of the green, type 2
triangle and the red, type 1 triangle. If δ ≥ 8, the number of neighboring triangles of the
red, type 1 triangle in Hk is larger than the number of neighboring triangles of the green,
type 2 triangle.

Let k = 6δ −8. Let C = 9
2kδ −4δ −k+2 · (

(
δ

3

)
−
(

δ−1
3

)
) be the number of neighboring

triangles of the green, type 2 triangle in Rk. Let D = 9
2kδ − 3k+

(
δ

3

)
−
(

δ−3
3

)
− 1 be the

number of neighboring triangles of the red, type 1 triangle in Rk. Then, Table 2.3 illustrates
the degree difference in Rk.

The Table 2.3 implies that if k = 6δ −8, for δ < 23, the green, type 2 triangle has more
neighboring triangles in Rk than the red, type 1 triangle. For δ = 23, both triangles have the
same number of neighboring triangles and therefore the degree difference is 0 in cl3(Rk).
For δ > 23, the red, type 1 triangle has more neighboring triangles in Rk than the green,
type 2 triangle. Therefore, for instance, if δ = 100, the degree difference in cl3(Rk) will be
3,773.
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Green, type 2 triangle Red, type 1 triangle Difference Ratio
δ A = 2 · (

(
δ

3

)
−
(

δ−1
3

)
) B =

(
δ

3

)
−
(

δ−3
3

)
−1 A−B A

B
4 6 3 3 2.000
5 12 9 3 1.333
6 20 18 2 1.111
7 30 30 0 1.000
8 42 45 -3 0.933
9 56 63 -7 0.889

14 156 198 -42 0.788
19 306 408 -102 0.750
23 462 630 -168 0.733
28 702 975 -273 0.720
78 5852 8550 -2698 0.684

100 9702 14259 -4557 0.680
150 22052 32634 -10582 0.676
200 39402 58509 -19107 0.673

Table 2.2: The number of neighboring triangles of the triangle in Hk

k Type 2 triangle Type 1 triangle Degree difference
δ k = 6 ·δ −8 C D |C−D|
4 16 262 243 19
5 22 465 438 27
6 28 724 690 34
7 34 1039 999 40
8 40 1410 1365 45
9 46 1837 1788 49

14 76 4812 4758 54
19 106 9187 9153 34
23 130 13695 13695 0
28 160 20590 20655 65
78 460 166540 168630 2090

100 592 275110 278883 3773
150 892 622660 632058 9398
200 1192 1110210 1127733 17523

Table 2.3: The number of neighboring triangles of the triangle in Rk and the degree difference
in the clique graph

In contrast to the previous section, if δ � 23 and k = 6δ −8, the vertex corresponding
to the red, type 1 triangle in Rk will have much larger degree in cl3(Rk) than the vertex
corresponding to the green, type 2 triangle in Rk. This implies that the degree difference in
the clique graph cl3(Rk) can be arbitrarily large for any δ � 23.
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Chapter 3

INDEPENDENT SETS OF THE CLIQUE GRAPH

Recall that an independent set is a set of vertices in a graph G of which no pair is adjacent.
The independence number α(G) of a graph G is the order of the largest independent set of
G. This continues the same theme as the previous chapter, namely what properties of G are
carried into clt(G). It is a folklore result that the independence number of a regular graph
is less than or equal to n

2 , where n is the number of vertices in the graph. The goal of this
section is to investigate whether this property (no independent set on more than half the
vertices of the graph) carries over to clt(G) if G is regular.

3.1 Independence number of the clique graph - Preliminary discussion

In order to understand what are the necessary conditions for α(clt(G))> |clt(G)|
2 to hold

or not to hold, multiple cases that all have different restrictions on G and its clique graph
will be analyzed.

First of all, before considering the question of α(clt(G))> |clt(G)|
2 , consider the following

examples. If G =C7 = cl2(C7), then α(cl2(C7)) = 3 <
nclt (G)

2 = 7
2 = 3.5. And, if G =C6 =

cl2(C6), then α(cl2(C6)) = 3 = 6
2 =

nclt (G)

2 . In these examples which satisfy the 4 conditions,
the bound α(clt(G))≤ |clt(G)|

2 indeed holds for G.
Secondly, the consequences on α(clt(G)) of not enforcing all of the 4 conditions on G

will be analyzed.

1. If the original graph G does not necessarily have to be regular, α(clt(G))> |clt(G)|
2 is

possible. Let G be P6, and the clique graph be cl2(G) = P5 (Figure 3.1). Since P5 has
n = 5 vertices and α(P5) = 3, we have α(cl2(G)) = 3 >

nclt (G)

2 = 2.5.

Figure 3.1: Non-regular graph G = P6 and its clique graph cl2(G) = P5

2. If not all of the edges of G necessarily have to be in a t-clique, then Figure 3.2 and
Figure 3.3 illustrate examples where α(clt(G))> |clt(G)|

2 holds.
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Figure 3.2: Graphs G (whose edges are not all in a t-clique) and cl3(G)

Figure 3.3: Graphs G (whose edges are not all in a t-clique) and cl4(G)

In Figure 3.2, the original graph G does satisfy 3 of the 4 conditions (regular, non-
complete, t = 3 close to δ = 4) and α(cl3(G)) = 3 > |clt(G)|

2 = 4
2 = 2. Similarly, in

Figure 3.3, the original graph G also satisfies 3 of the 4 conditions (regular, non-
complete, t = 4 close to δ = 6) and α(cl4(G)) = 4 > |clt(G)|

2 = 7
2 = 3.5.

3. If not all of the edges of G necessarily have to be in a t-clique and the clique graph
clt(G) does not have to be connected, then Figure 3.4 gives an example of a clique
graph cl3(G) of a regular graph G where α(cl3(G)) = 2 >

nclt (G)

2 = 2
2 = 1 holds.

Figure 3.4: Non-connected clique graph cl3(G) of a regular graph G whose edges are not all
in a 3-clique

Therefore, the inequality α(clt(G))> |clt(G)|
2 is possible if any 1 of the 4 conditions on

G and clt(G) is replaced with 1 of the following:
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1. G is not regular (G = P6 and cl2(G) = P5).

2. Not all of the edges of G are in a t-clique (Figures 3.2, 3.3).

3. Not all of the edges of G are in a t-clique, and clt(G) is not connected (Figure 3.4).

After having established these special cases, the remaining part of the discussion will
be spent on analyzing if α(clt(G))> |clt(G)|

2 is possible for graphs G that satisfy all of our
4 conditions. In order to possibly find a clique graph, such that α(clt(G)) > |clt(G)|

2 , the
desired (and undesired) structural features of the clique graph will be analyzed.

1. If the clique graph is a complete graph, clt(G) = Kn, then α(clt(G)) = α(Kn) = 1.
While α remains constant,

nclt (G)

2 = |clt(G)|
2 = Kn

2 increases with increasing nclt(G).
Therefore, the clique graph should not be complete.

2. As discussed previously, if the clique graph is a cycle, clt(G) =Cn, then α(clt(G)) =

α(Kn) =
n
2 and |clt(G)|

2 = Cn
2 = n

2 . Since α(clt(G)) = |clt(G)|
2 , this case is an improve-

ment compared to the Kn case. Therefore, we would like the clique graph to have
more structural features of the cycle than the complete graph.

3. If the clique graph is a star on nclt(G) vertices (Figure 3.5), then α(clt(G)) = nclt(G)−1.
If nclt(G) > 2, α(clt(G)) = nclt(G)− 1 >

nclt (G)

2 . Additionally, the inequality can be
arbitrarily large if nclt(G) is large. Therefore, if possible, we might like the clique
graph to have structural features of a star.

Figure 3.5: Desired clique graph clt(G) with α(clt(G)) = 6

Remark: If the clique graph cannot be a “true” star (due to conditions’ limitations on
G), then we would like the clique graph to have a lot of leaves, as illustrated in Figure
3.6, in order to drive the independence number arbitrarily large.

In sum: Figure 3.7 illustrates the spectrum of possible cases that were just discussed.
Whereas on the left side, we have, for clt = Kn, the case where the independence number is
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Figure 3.6: Desired clique graph clt(G) with α(clt(G)) = 12

Figure 3.7: What structural features should the clique graph have for α(clt(G))> |clt(G)|
2 to

be possibly true?

arbitrarily smaller than half of the graph’s vertices, that is α = 1� |clt(G)|
2 , the right side

illustrates the case where the reverse holds, that is α� |clt(G)|
2 , if clt(G) is a star. The center

of the figure shows the case where α = |clt(G)|
2 if clt(G) =Cn.

Figure 3.8: Implications of increasing degree difference on the independence number

As seen in Figure 3.7, both graphs Kn and Cn (which are graphs that do not satisfy
the condition for the clique graph that we are trying to prove) are regular. In contrast, the
stars in Figure 3.8 have degree difference 3 and 7, and their respective difference between
independence number and half of the vertices, α− n

2 , is 1.5 and 3.5. For stars, the larger
the degree difference, the larger the difference between the inequality between α and n

2 .
In the following, the folklore result mentioned at the beginning of the chapter will be
proven in order to better understand the relationship between regularity of the graph and the
independence number of the graph.
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Theorem 3.1.1. For any regular graph G, α(G)≤ |G|2 .

Proof. Let I be the largest independent set in G. The number of outgoing edges from
I are E(I,G− I) = |I| ·δ (Figure 3.9). The number of outgoing edges from (G− I) are at
most E(G− I, I) ≤ |(G− I)| · δ because vertices in (G− I) could be adjacent. Therefore,
we have

|I| ·δ = E(I,G− I)≤ |(G− I)| ·δ ,

that simplifies to

|I| ≤ |G|
2

,

which is what we want to show.

Figure 3.9: Doublecounting argument to show that |I|= α(G)≤ |G|2 in a regular graph

Therefore, we now know that the clique graph in question cannot be regular if α(clt(G))>
|clt(G)|

2 . This finding is consistent with the previously stated observation that Kn and Cn are
both regular and are not possible clique graphs for α(clt(G))> |clt(G)|

2 to be true.
However, does this finding imply that large enough degree difference may cause α(G)>

n
2 to be true?

3.2 Independence number and degree difference

This is not the case and can be shown by considering the construction from the last
chapter. As shown in Chapter 2, the clique graph in Figure 3.10 has degree difference 1.
Therefore, this graph is slightly irregular. Additionally, the clique graph has the independence
number 8, α(cl3(G)) = 8, and order 24, |cl3(G)| = 24. Therefore, α = 8 6> n

2 = 24
2 = 12.

Therefore, not every irregular clique graph satisfies α(clt(G))> |clt(G)|
2 . Next, the family of

graphs Rk illustrating arbitrarily large degree difference from Chapter 2 will be analyzed.
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Figure 3.10: Independence number of slightly irregular clique graph cl3(G)

In the following, we will derive formulas for calculating the number of vertices in cl3(R),
|cl3(R)|, and α(cl3(R)). Then, we will be able to compare α(cl3(R)) and |cl3(R)|

2 .

Figure 3.11: Graph Rk with regular subgraphs Gk and Hk

First of all, for δ = δG = δH = 3, since k = nG = nH , there are

3
2

k · k+ 3
2

k · k+2 = 3 · k2 +2

total triangles in Rk (Figure 3.11), because there are nGδG
2 choices for a base in G and nH

choices for an apex in H, with a similar expression for H. Therefore, the clique graph
cl3(R) has (3 · k2 + 2) vertices. For example, in Figure 3.11, the clique graph cl3(R) has
ncl3(R) = 3 · (6)2 +2 = 110 vertices.

Secondly, α(clt(R)) is the same as the maximum number of vertex-disjoint t-cliques
in R. In this particular case, if t = 3, the maximum number of vertex-disjoint triangles in
R are counted. In order to maximize the number of vertex-disjoint triangles in R, the best
combination of bases and apexes of triangles in G and H needs to be found. Since the edges
in G and H that do not belong to Cn (Figure 3.12) are covered by the vertices and edges of
the respective Cn, these edges in G and H can be neglected.
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Figure 3.12: Edges within G or H can be neglected when finding the maximum number of
vertex-disjoint 3-cliques in R

Since a total of 3 vertices from both G and H are needed to build a triangle, we will
need 2 vertices and their corresponding edge for the base of the triangle in either G or H

and the third vertex as the apex of the triangle from the other subgraph. For k = nG = nH , if

we use
⌈

2
3 k
2

⌉
·2 of G’s vertices and their corresponding edges as bases of triangles and the

remaining vertices of G as apexes of triangles, it is ensured that the subgraph H has enough
vertex-disjoint bases and vertices to build a total of

⌊2
3k
⌋

vertex-disjoint triangles in Rk. This
implies that α(cl3(Rk)) =

⌊2
3k
⌋
.

Remark: Since R has 2k vertices, it can have at most
⌊2

3k
⌋

disjoint triangles (each triangle
accounts for 3 vertices).

Figure 3.13: Finding the maximum number of vertex-disjoint triangles between G and H
when Gk = Hk =C20

For instance, for k = 20 (Figure 3.13), we would use
⌈

2
3 20
2

⌉
· 2 = 7 · 2 = 14 (green)

vertices in G and their corresponding edges as bases of 7 triangles. The remaining 20−14 =

6 (red) vertices in G can serve as apexes of triangles. Conversely, in H, we will use 7 (green)
vertices (corresponding to the 7 bases in G) as the apexes of triangles and 6 ·2 = 12 (red)
vertices as bases of triangles. In total, we will therefore have a total of 7+6 = 13 vertex-
disjoint triangles for k = 20. This finding is confirmed by α(cl3(R)) =

⌊2
3k
⌋
=
⌊2

320
⌋
=

b13.33c= 13.
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A: Order of cl3(R) B: Independence number of cl3(R) Ratio Difference

k |cl3(R)|= 3k2 +2 α(cl3(R)) =
⌊2

3k
⌋ A

2
B

A
2 −B

6 110 4 13.75 51
8 194 5 19.40 92

10 302 6 25.17 145
12 434 8 27.13 209
28 2354 18 65.39 1159
30 2702 20 67.55 1331
32 3074 21 73.19 1516
34 3470 22 78.86 1713

Table 3.1: Comparison of α(cl3(R)) and |cl3(R)|
2

In sum: In Chapter 2 (degree difference formula, 2.3), it was found that for increasing
k, the degree difference becomes arbitrarily large in cl3(Rk). For increasing k, Table 3.1
illustrates the increase of |cl3(R)| and of α(cl3(R)) and compares them in the last 2 columns.
Previously, the following question was asked: Does a large enough degree difference may
cause α(clt(G))> |clt(G)|

2 to possibly be true? The result of Table 3.1 indicate that this is
not the case. Even if the degree difference of the clique graph, cl3(R), becomes arbitrarily
large for increasing k, the independence number of cl3(R) is not necessarily greater than the

clique graph’s order divided by 2. In contrast, both the ratio of
A
2
B and the difference A

2 −B

actually increase with increasing k.

3.3 Independence number of line graphs and of clt(G) for t > 2

In this section, the independence number of line graphs and clt(G) for t > 2 will be
analyzed. To begin, we will show that the independence number of line graphs is smaller
or equal to half the number of its vertices. Subsequently, we begin extending this proof to
clt(G) for t > 2.

Figure 3.14: Graph with α(G)> n
2 that contains the claw K1,3

The graph in Figure 3.14) is non-regular and satisfies α(clt(G))> |clt(G)|
2 . However, the

line graph cl2(G) cannot contain the claw K1,3 as an induced subgraph (Section 1.3.4 and
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Figure 1.19). Therefore, the line graph cannot be a star, Sn, or the graph in Figure 3.14 since
these graphs contain the claw K1,3.

Theorem 3.3.1. Let L(G) be a line graph of a regular graph G. Then, α(L(G))≤ |L(G)|
2 .

Proof. In Theorem 2.1.1, we showed that the line graph L(G) of a regular graph G

is regular. In Theorem 3.1.1, we showed that for any regular graph G, α(G) ≤ 1
2 |V (G)|.

Therefore, any line graph L(G) of a regular graph G has α(L(G))≤ |L(G)|
2 .

The following question arises: Can this result be extended to clt(G) for t > 2? Further-
more, what properties of a line graph might translate to clt(G), and can we base a proof off
of these properties?

First of all, although we do not know that clt(G) is regular, the explanation of why the
line graph cl2(G) does not contain the claw K1,3 presented in Section 1.3.4 and Figure 1.20
can be extended to the general case t. Therefore, we do know that clt(G) does not contain
K1,1+t .

Additionally, we can show that clt contains no leaves.

Lemma 3.3.2. Let G be a regular graph. Then, clt(G) cannot have any leaves.

Proof. Let K be a copy of Kt in G corresponding to a leaf in clt(G), and let K′ be the
copy of Kt that intersects K (The red and green cliques in Figure 3.15). Let v1,...,vk be the
k vertices of K that are not in the intersection of K and K′. Let q1,...,qt be the t vertices of
K′ that are not in the intersection of K and K′. Let u1,...,us be the s vertices that are in the
intersection of K and K′. The vertices v1,...,vk are adjacent only to vertices in K since if they
were adjacent to a vertex outside the clique, the corresponding edge could be extended to
another clique, which in turn would make the vertex in clt(G) corresponding to K no longer
a leaf. The vertices u1,...,us are adjacent to the vertices v1,...,vk in K and to the vertices
q1,...,qt in K′. Therefore, the degree of the vertices u1,...,us is larger than the degree of the
vertices v1,...,vk, making the graph G a non-regular graph. Therefore, since G is regular and
every edge is in a t-clique, then clt(G) cannot have a leaf.

Relaxing the condition that our graph must be a line graph of a regular graph, we can just
assume that the clique graph contains no copy of K1,3 as an induced subgraph and contains
no leaves.

Theorem 3.3.3. Let G contain no copy of K1,3 as an induced subgraph and contain no

leaves. Then, α(G)≤ |G|2 .

Proof. Assume that α(G)> n
2 (with n≥ 2). Then, there must be some vertex in G− I

adjacent to 2 or more vertices in I (Figure 3.16). If this was not the case, then there would
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Figure 3.15: Graph G with 6 t-cliques

be at least as many vertices in G− I as in I. Remove “alternating” paths Pi from G that
alternate between I and G− I (Figure 3.17), such that each path Pk is of maximum length
in G− (P1 ∪P2 ∪ ·· · ∪Pk−1). Then, find the first path Pl with more vertices in I than in
G− I. This has to happen since |I| > |G− I|. Consider the end vertex u ∈ I. Since the
end vertex u (green vertex in Figure 3.17) cannot be a leaf, it has to be adjacent to another
vertex s ∈ (G− I) in another path. The vertex u must be adjacent to a vertex s in a previous
path, or the path containing u could be extended. The vertex u cannot be adjacent to an end
vertex of a previous path (red vertices in Figure 3.17), or that path could have been extended.
Therefore, the vertex u has to be adjacent to a non-end vertex s ∈ (G− I) (blue vertices in
Figure 3.17) in a previous path. If the edge (u,s) is added to the graph, then G contains a
copy of the claw K1,3, which is a contradiction.

Figure 3.16: Graph G with |I|> |G− I|
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Figure 3.17: The possible alternating paths that can be removed from G

Therefore, we have shown that if G is regular and its clique graph clt(G) does not contain
a copy of K1,3 as an induced subgraph, then α(clt(G))≤ |clt(G)|

2 .
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Chapter 4

REMAINING QUESTIONS ABOUT THE CLIQUE GRAPHS

The following chapter discusses 2 topics that are related to the main theme of this thesis
and some of the open questions.

4.1 On the completeness of the clique graph clt(G) and the original graph G

In this section, the following question will be addressed: If the clique graph clt(G) is
complete, does the original graph G have to be complete? First of all, let clt(G) = K3. For
what G and corresponding t is clt(G) = K3? The following examples and the discussion
below answer this question.

Figure 4.1: Examples for cl2(G) = cl2(H) = cl3(I) = cl4(J) = K3

As illustrated in Figure 4.1, we have cl2(G) = cl2(H) = cl3(I) = cl4(J) = K3. Therefore,
we now know that if the clique graph clt(G) is complete, the original graph does not
necessarily have to be complete, as the graphs H, I, and J indicate.

After having found that if the clique graph clt(G) is complete, the graph G does not
necessarily have to be complete, we want to know for what conditions G will be complete.

1. Could it be true that for certain choices of t or n, if the clique graph clt(G) is complete,
then the graph G will also be complete? The following argument shows that this
statement is also not true.
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Given any Kn as the complete clique graph, you can always find a non-complete graph
G, such that clt(G) = Kn for any t. In order to find the graph G that satisfies the
previous statement, you have to draw n t-cliques that all have 1 vertex in common.
Therefore, you will have 1 vertex that dominates all the t-cliques.

2. The non-complete graphs H, I, and J are not regular. So, could it be true that if
clt(G) is complete and G is regular, then G will be complete? In order to disprove this
statement, a counterexample that satisfies the following conditions needs to be found:

• G is regular.

• G is non-complete.

• clt(G) is complete.

Figure 4.2 serves as a counterexample.

Figure 4.2: Graph K and cl3(K) = K2

First of all, the clique cl3(K) = K2 is a complete graph. Furthermore, graph K is both
regular and not complete. Therefore, it is not true that if clt(G) is complete and graph
G is regular, then graph G will be complete.

As a next step, other conditions that could possibly imply that if clt(G) is complete, then
G will also be complete would have been analyzed, including requiring that every edge be
contained in a copy of Kt .

4.2 On the number of induced cycles and paths in the clique graph

As an introduction to the following analysis, a result by Wolf will be presented and
discussed. Let Pk (respectively, Ck) denote an induced path (respectively, cycle) on k vertices
in clt(G). In [11], Wolk showed that if G is a connected graph, then either G contains an
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induced copy of P4 (the path on 4 vertices), C4, or a dominating vertex. As the following
examples suggest (Figures 4.3, 4.4), for some connected graphs G, just 1 of the criteria – P4,
C4, or a dominating vertex – is met whereas other connected graphs exhibit all of the above
criteria.

If n < 4 (Figure 4.3), every connected graph has a dominating vertex and does not
contain an induced copy of P4 and C4.

Figure 4.3: Graphs with dominating vertex (n < 4)

If n≥ 4 (Figure 4.4), the connected graph could also contain an induced copy of P4 and
C4. The complete graph on 4 vertices, K4, even contains all 4 criteria.

Figure 4.4: Graphs with dominating vertex, P4 and C4 (n≥ 4)

Lyle [7] proved that if G is a connected, δ -regular graph with t > 3
5(δ +1), then there

is some k ≥ 4, such that clt(G) contains an induced copy of Ck. For instance, the 8-regular
graph G and its clique graph cl6(G) =C7 (Figure 4.5) satisfy the theorem’s statement since
t = 6 > 3

5(8+1) = 27
5 = 5.4.

1 of the reasons why we are interested in the existence of induced cycles in G is the
following bound on t: If G is a δ -regular graph and clt(G) contains an induced copy of Ck,
then t ≤ 2

k n. In the example (Figure 4.5), we have t ≤ 2
k n = 2

7 · 21 = 6. Therefore, since
t = 6, the bound is sharp.

In the following, we will discuss what conditions have to be met in order for the clique
graph to be a cycle. First of all, a couple of definitions will be discussed and presented.
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Figure 4.5: Graph G (δ = 8) and its clique graph cl6G) =C7

Figure 4.6: Graph G (δ = 5) and its clique graph cl4G) =C4

Let T0, T1,..., Tk−1 be cliques corresponding to the vertices of the path Pk (respectively,
cycle Ck). Let Xi = Ti∩Ti+1(modk) for i = 0,..., k− 2 (respectively, k− 1). The following
example (Figure 4.6) illustrates these definitions. For instance, T0 corresponds to vertex 1
of the cycle C4 in cl4(G). Furthermore, X0 = T0∩T1(mod4), which is equivalent to the 2 top
right vertices of graph G with their corresponding edge.

Additionally, for each vertex v ∈V (G), I(v) = (i : N(v)∩Xi 6= /0). For instance (Figure
4.7), if we analyze vertex v1 ∈V (G), we get I(v1) = (0,2,3). To see this, we have N(v1) =

v2,v3,v4,v7,v8, and X0 = v3,v4, X1 = v5,v6, X2 = v7,v8, and X3 = v1,v2.

Figure 4.7: Conditions for the clique graph to be a cycle

Since N(v1)∩X0 = v3,v4 6= /0, N(v1)∩X1 = /0, N(v1)∩X2 = v7,v8 6= /0 and N(v1)∩X3 =

v2 6= /0, we have I(v1) = (0,2,3), So, |I(v)|= 3.
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After analyzing the conditions for existence of induced cycles and paths in the clique
graph, we will be discussing how many induced cycles and paths are in the clique graph.

First of all, in order to better understand the question, a couple of examples are presented.
Let the clique graph clt(G) be a graph with 2 disjoint 4-cycles (Figure 4.8). Then, for
different t’s, the respective graph G is presented.

Figure 4.8: Graphs G for different ts of a given clique graph clt(G)

Secondly, let the clique graph clt(G) be a graph with 3 4-cycles (Figure 4.9). Then, for
different t’s, the respective graph G is presented.

Figure 4.9: Graphs G for different t’s of a given clique graph clt(G)

Thirdly, let the clique graph clt(G) be a graph with a 5-cycle and a slightly changed
4-cycle (Figure 4.10). Then, for different t’s, the respective graph G is presented.

The analysis of the previous examples serves as a first step in understanding the question
“How many induced cycles and paths are in the clique graph?” Therefore, these examples
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Figure 4.10: Graphs G for different t’s of a given clique graph clt(G)

should be analyzed closely. First of all, the approach of coming up with examples was in
reverse order than what we have done so far. In this section, as a first step, the clique graph
clt(G) was chosen, and subsequently the graph G for different values of t was found. In
the initial approach - building the clique graph from a given original graph -, the clique
graph clt(G) could always be found for t = 2 (as long as the original graph is connected)
and for any subsequent t as long as the graph G contains at least 1 t-clique. In contrast, for a
couple of the previous examples (Figures 4.9, 4.10), it was not possible to find the graph G

(of a given clique graph clt(G)) for t = 2 since the clique graph has a claw as an induced
subgraph. Therefore, this clique graph cl2(G) (the line graph ) does not exist; therefore, G

cannot be found for t = 2 for these examples.
Secondly, whereas the degree of the given clique graph clt(G) is obviously unchanging,

with increasing value of t, the degree of the graph G is also increasing. Furthermore, if the
clique graph clt(G) is not connected, then the graph G is also not connected. The reverse
also holds. Recall that when building a clique graph clt(G), cliques of order t in the original
graph G become vertices in the clique graph which are adjacent if the t-cliques in G have at
least 1 vertex in common. Therefore, for a vertex or set of vertices of the clique graph to not
be disjoint, the corresponding clique or collection of cliques in the original graph cannot
have a vertex in common with the other cliques of the graph, assuming that every edge of G

is in a t-clique. Therefore, in order for the clique graph not to be connected, the original
graph has to be disconnected.

Thirdly, recall that in order to find an induced subgraph of G, choose a subset of the
vertices of G and then choose all edges in G whose endpoints (corresponding to vertices)
are both in the chosen set. For instance, if the red vertices in the graph G in Figure 4.11
are chosen to be in the subset of the vertices, then the induced subgraph of these vertices is
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Figure 4.11: Number of induced cycles and paths of the graph G

shown on the right in Figure 4.11. Therefore, the number of induced cycles and paths is 1
since we have 1 C5 and 1 P5 in the induced subgraph.

In order to find the number of induced cycles or paths in the clique graph, the previous
examples and clique graphs of graphs that satisfy the 4 conditions need to be further analyzed.
As seen in the other chapters, the implications of the regularity and the “every edge has to
be in a t-clique” conditions on G have to be closely analyzed. Furthermore, what are the
differences of the number of induced cycles or paths if t = 2 compared to t > 3?
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