163 research outputs found

    Outcomes of Esophageal Dilation in Eosinophilic Esophagitis: Safety, Efficacy and Persistence of the Fibrostenotic Phenotype

    Get PDF
    Esophageal dilation is commonly performed in eosinophilic esophagitis (EoE), but there are few long-term data. The aims of this study were to assess the safety and long-term efficacy of esophageal dilation in a large cohort of EoE cases and determine the frequency and predictors of requiring multiple dilations

    The extremely narrow-caliber esophagus is a treatment-resistant subphenotype of eosinophilic esophagitis

    Get PDF
    Some patients with eosinophilic esophagitis (EoE) have an extremely narrowed esophagus, but the characteristics of this group have not been extensively described. We aimed to characterize the narrow-caliber phenotype of EoE, determine associated risk factors, and identify differences in treatment response in this sub-group of patients

    Response of liver metabolic pathways to ketogenic diet and exercise are not additive

    Get PDF
    © Lippincott Williams & Wilkins. Purpose Studies suggest ketogenic diets (KD) produce favorable outcomes (health and exercise performance); however, most rodent studies have used a low-protein KD, which does not reflect the normal- to high-protein KD used by humans. Liver has an important role in ketoadaptation due to its involvement in gluconeogenesis and ketogenesis. This study was designed to test the hypothesis that exercise training (ExTr) while consuming a normal-protein KD (NPKD) would induce additive/synergistic responses in liver metabolic pathways. Methods Lean, healthy male C57BL/6J mice were fed a low-fat control diet (15.9% kcal protein, 11.9% kcal fat, 72.2% kcal carbohydrate) or carbohydrate-deficient NPKD (16.1% protein, 83.9% kcal fat) for 6 wk. After 3 wk on the diet, half were subjected to 3-wk treadmill ExTr (5 d·wk-1, 60 min·d-1, moderate-vigorous intensity). Upon conclusion, metabolic and endocrine outcomes related to substrate metabolism were tested in liver and pancreas. Results NPKD-fed mice had higher circulating β-hydroxybutyrate and maintained glucose at rest and during exercise. Liver of NPKD-fed mice had lower pyruvate utilization and greater ketogenic potential as evidenced by higher oxidative rates to catabolize lipids (mitochondrial and peroxisomal) and ketogenic amino acids (leucine). ExTr had higher expression of the gluconeogenic gene, Pck1, but lower hepatic glycogen, pyruvate oxidation, incomplete fat oxidation, and total pancreas area. Interaction effects between the NPKD and ExTr were observed for intrahepatic triglycerides, as well as genes involved in gluconeogenesis, ketogenesis, mitochondrial fat oxidation, and peroxisomal markers; however, none were additive/synergistic. Rather, in each instance the interaction effects showed the NPKD and ExTr opposed each other. Conclusions An NPKD and an ExTr independently induce shifts in hepatic metabolic pathways, but changes do not seem to be additive/synergistic in healthy mice

    Effect of multi-planar CT image reformatting on surgeon diagnostic performance for localizing thoracolumbar disc extrusions in dogs

    Get PDF
    Accurate pre-operative localization and removal of disc material are important for minimizing morbidity in dogs with thoracolumbar disc extrusions. Computed tomography (CT) is an established technique for localizing disc extrusions in dogs, however the effect of multi-planar reformatting (MPR) on surgeon diagnostic performance has not been previously described. The purpose of this study was to test the effect of MPR CT on surgeon diagnostic accuracy, certainty and agreement for localizing thoracolumbar disc extrusions in dogs. Two veterinary surgeons and one veterinary neurologist who were unaware of surgical findings independently reviewed randomized sets of two-dimensional (2D) and MPR CT images from 111 dogs with confirmed thoracolumbar disc extrusions. For each set of images, readers recorded their localizations for extruded disc material and their diagnostic certainty. For MPR images, readers also recorded views they considered most helpful. Diagnostic accuracy estimates, mean diagnostic certainty scores and inter-observer agreement were compared using surgery as the gold standard. Frequencies were compared for MPR views rated most helpful. Diagnostic accuracy estimates were significantly greater for MPR vs. 2D CT images in one reader. Mean diagnostic certainty scores were significantly greater for MPR images in two readers. The change in agreement between 2D and MPR images differed from zero for all analyses (site, side, number affected) among all three readers. Multi-planar views rated most helpful with the highest frequency were oblique transverse and curved dorsal planar MPR views. Findings from this study indicate that multi-planar CT can improve surgeon diagnostic performance for localizing canine thoracolumbar disc extrusions

    Cooperation of p300 and PCAF in the Control of MicroRNA 200c/141 Transcription and Epithelial Characteristics

    Get PDF
    Epithelial to mesenchymal transition (EMT) not only occurs during embryonic development and in response to injury, but is an important element in cancer progression. EMT and its reverse process, mesenchymal to epithelial transition (MET) is controlled by a network of transcriptional regulators and can be influenced by posttranscriptional and posttranslational modifications. EMT/MET involves many effectors that can activate and repress these transitions, often yielding a spectrum of cell phenotypes. Recent studies have shown that the miR-200 family and the transcriptional suppressor ZEB1 are important contributors to EMT. Our previous data showed that forced expression of SPRR2a was a powerful inducer of EMT and supports the findings by others that SPRR gene members are highly upregulated during epithelial remodeling in a variety of organs. Here, using SPRR2a cells, we characterize the role of acetyltransferases on the microRNA-200c/141 promoter and their effect on the epithelial/mesenchymal status of the cells. We show that the deacetylase inhibitor TSA as well as P300 and PCAF can cause a shift towards epithelial characteristics in HUCCT-1-SPRR2a cells. We demonstrate that both P300 and PCAF act as cofactors for ZEB1, forming a P300/PCAF/ZEB1 complex on the miR200c/141 promoter. This binding results in lysine acetylation of ZEB1 and a release of ZEB1 suppression on miR-200c/141 transcription. Furthermore, disruption of P300 and PCAF interactions dramatically down regulates miR-200c/141 promoter activity, indicating a PCAF/P300 cooperative function in regulating the transcriptional suppressor/activator role of ZEB1. These data demonstrate a novel mechanism of miRNA regulation in mediating cell phenotype

    Determinants of selenium status in healthy adults

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Selenium (Se) status in non-deficient subjects is typically assessed by the Se contents of plasma/serum. That pool comprises two functional, specific selenoprotein components and at least one non-functional, non-specific components which respond differently to changes in Se intake. A more informative means of characterizing Se status in non-deficient individuals is needed.</p> <p>Methods</p> <p>Multiple biomarkers of Se status (plasma Se, serum selenoprotein P [SEPP1], plasma glutathione peroxidase activity [GPX3], buccal cell Se, urinary Se) were evaluated in relation to selenoprotein genotypes (GPX1, GPX3, SEPP1, SEP15), dietary Se intake, and parameters of single-carbon metabolism in a cohort of healthy, non-Se-deficient men (n = 106) and women (n = 155).</p> <p>Conclusions</p> <p>Plasma Se concentration was 142.0 ± 23.5 ng/ml, with GPX3 and serum-derived SEPP1 calculated to comprise 20% and 34%, respectively, of that total. The balance, comprised of non-specific components, accounted for virtually all of the interindividual variation in total plasma Se. Buccal cell Se was associated with age and plasma homocysteine (hCys), but not plasma Se. SEPP1 showed a quadratic relationship with body mass index, peaking at BMI 25-30. Urinary Se was greater in women than men, and was associated with metabolic body weight (kg<sup>0.75</sup>), plasma folate, vitamin B<sub>12 </sub>and hCys (negatively). One <it>GPX1 </it>genotype (679T/T) was associated with significantly lower plasma Se levels than other allelic variants. Selenium intake, estimated from food frequency questionnaires, did not predict Se status as indicated by any biomarker. These results show that genotype, methyl-group status and BMI contribute to variation in Se biomarkers in Se-adequate individuals.</p

    Forest and woodland replacement patterns following drought-related mortality

    Get PDF
    Forest vulnerability to drought is expected to increase under anthropogenic climate change, and drought-induced mortality and community dynamics following drought have major ecological and societal impacts. Here, we show that tree mortality concomitant with drought has led to short-term (mean 5 y, range 1 to 23 y after mortality) vegetation-type conversion in multiple biomes across the world (131 sites). Self-replacement of the dominant tree species was only prevalent in 21% of the examined cases and forests and woodlands shifted to nonwoody vegetation in 10% of them. The ultimate temporal persistence of such changes remains unknown but, given the key role of biological legacies in long-term ecological succession, this emerging picture of postdrought ecological trajectories highlights the potential for major ecosystem reorganization in the coming decades. Community changes were less pronounced under wetter postmortality conditions. Replacement was also influenced by management intensity, and postdrought shrub dominance was higher when pathogens acted as codrivers of tree mortality. Early change in community composition indicates that forests dominated by mesic species generally shifted toward more xeric communities, with replacing tree and shrub species exhibiting drier bioclimatic optima and distribution ranges. However, shifts toward more mesic communities also occurred and multiple pathways of forest replacement were observed for some species. Drought characteristics, species-specific environmental preferences, plant traits, and ecosystem legacies govern post drought species turnover and subsequent ecological trajectories, with potential far-reaching implications for forest biodiversity and ecosystem services.Peer reviewe

    Forest and woodland replacement patterns following drought-related mortality

    Get PDF
    Forest vulnerability to drought is expected to increase under anthropogenic climate change, and drought-induced mortality and community dynamics following drought have major ecological and societal impacts. Here, we show that tree mortality concomitant with drought has led to short-term (mean 5 y, range 1 to 23 y after mortality) vegetation-type conversion in multiple biomes across the world (131 sites). Self-replacement of the dominant tree species was only prevalent in 21% of the examined cases and forests and woodlands shifted to nonwoody vegetation in 10% of them. The ultimate temporal persistence of such changes remains unknown but, given the key role of biological legacies in long-term ecological succession, this emerging picture of postdrought ecological trajectories highlights the potential for major ecosystem reorganization in the coming decades. Community changes were less pronounced under wetter postmortality conditions. Replacement was also influenced by management intensity, and postdrought shrub dominance was higher when pathogens acted as codrivers of tree mortality. Early change in community composition indicates that forests dominated by mesic species generally shifted toward more xeric communities, with replacing tree and shrub species exhibiting drier bioclimatic optima and distribution ranges. However, shifts toward more mesic communities also occurred and multiple pathways of forest replacement were observed for some species. Drought characteristics, species-specific environmental preferences, plant traits, and ecosystem legacies govern postdrought species turnover and subsequent ecological trajectories, with potential far-reaching implications for forest biodiversity and ecosystem services.Additional co-authors: Lucía Galiano, Joseph L. Ganey, Patrick Gonzalez, Anna L. Jacobsen, Jeffrey Michael Kane, Thomas Kitzberger, Juan C. Linares, Suzanne B. Marchetti, George Matusick, Michael Michaelian, Rafael M. Navarro-Cerrillo, Robert Brandon Pratt, Miranda D. Redmond, Andreas Rigling, Francesco Ripullone, Gabriel Sangüesa-Barreda, Yamila Sasal, Sandra Saura-Mas, Maria Laura Suarez, Thomas T. Veblen, Caroline Vincke, and Ben Zeema

    Association between Polymorphisms in Glutathione Peroxidase and Selenoprotein P Genes, Glutathione Peroxidase Activity, HRT Use and Breast Cancer Risk.

    Get PDF
    Breast cancer (BC) is one of the most common cancers in women. Evidence suggests that genetic variation in antioxidant enzymes could influence BC risk, but to date the relationship between selenoproteins and BC risk remains unclear. In this report, a study population including 975 Danish cases and 975 controls matched for age and hormone replacement therapy (HRT) use was genotyped for five functional single nucleotide polymorphisms (SNPs) in SEPP1, GPX1, GPX4 and the antioxidant enzyme SOD2 genes. The influence of genetic polymorphisms on breast cancer risk was assessed using conditional logistic regression. Additionally pre-diagnosis erythrocyte GPx (eGPx) activity was measured in a sub-group of the population. A 60% reduction in risk of developing overall BC and ductal BC was observed in women who were homozygous Thr carriers for SEPP1 rs3877899. Additionally, Leu carriers for GPX1 Pro198Leu polymorphism (rs1050450) were at ∼2 fold increased risk of developing a non-ductal BC. Pre-diagnosis eGPx activity was found to depend on genotype for rs713041 (GPX4), rs3877899 (SEPP1), and rs1050450 (GPX1) and on HRT use. Moreover, depending on genotype and HRT use, eGPx activity was significantly lower in women who developed BC later in life compared with controls. Furthermore, GPx1 protein levels increased in human breast adenocarcinoma MCF7 cells exposed to β-estradiol and sodium selenite.In conclusion, our data provide evidence that SNPs in SEPP1 and GPX1 modulate risk of BC and that eGPx activity is modified by SNPs in SEPP1, GPX4 and GPX1 and by estrogens. Our data thus suggest a role of selenoproteins in BC development
    • …
    corecore