397 research outputs found
Impact micro-positioning actuator
An impact micro-positioning actuator. In one aspect of the invention, a threaded shaft is threadably received in a nut and the nut is impacted by an impacting device, causing the nut first to rotate relative to the shaft by slipping as a result of shaft inertia and subsequently to stick to the shaft as a result of the frictional force therebetween. The nut is returned to its initial position by a return force provided by a return mechanism after impact. The micro-positioning actuator is further improved by controlling at least one and preferably all of the following: the friction, the impact provided by the impacting device, the return force provided by the return mechanism, and the inertia of the shaft. In another aspect of the invention, a threaded shaft is threadably received in a nut and the shaft is impacted by an impacting device, causing the shaft to rotate relative to the nut
Telescope to Observe Planetary Systems (TOPS): a high throughput 1.2-m visible telescope with a small inner working angle
The Telescope to Observe Planetary Systems (TOPS) is a proposed space mission
to image in the visible (0.4-0.9 micron) planetary systems of nearby stars
simultaneously in 16 spectral bands (resolution R~20). For the ~10 most
favorable stars, it will have the sensitivity to discover 2 R_E rocky planets
within habitable zones and characterize their surfaces or atmospheres through
spectrophotometry. Many more massive planets and debris discs will be imaged
and characterized for the first time. With a 1.2m visible telescope, the
proposed mission achieves its power by exploiting the most efficient and robust
coronagraphic and wavefront control techniques. The Phase-Induced Amplitude
Apodization (PIAA) coronagraph used by TOPS allows planet detection at 2
lambda/d with nearly 100% throughput and preserves the telescope angular
resolution. An efficient focal plane wavefront sensing scheme accurately
measures wavefront aberrations which are fed back to the telescope active
primary mirror. Fine wavefront control is also performed independently in each
of 4 spectral channels, resulting in a system that is robust to wavefront
chromaticity.Comment: 12 pages, SPIE conference proceeding, May 2006, Orlando, Florid
An efficient stable optical polariser module for calibration of the S4UVN earth observation satellite
We describe here an optical polariser module intended to deliver well characterised polarised light to an imaging spectrometer instrument. The instrument in question is the Sentinel-4/UVN Earth observation imaging spectrometer due to be deployed in 2019 in a geostationary orbit. The polariser module described here will be used in the ground based calibration campaign for this instrument. One critical task of the calibration campaign will be the highly accurate characterisation of the polarisation sensitivity of instrument. The polariser module provides a constant, uniform source of linearly polarised light whose direction can be adjusted without changing the output level or uniformity of the illumination.
A critical requirement of the polariser module is that the illumination is uniform across the exit pupil. Unfortunately, a conventional Glan-Taylor arrangement cannot provide this uniformity due to the strong variation in transmission at a refractive surface for angles close to the critical angle. Therefore a modified prism arrangement is proposed and this is described in detail. Detailed tolerance modelling and straylight modelling is also reported here
Patterns of Intron Gain and Loss in Fungi
Little is known about the patterns of intron gain and loss or the relative contributions of these two processes to gene evolution. To investigate the dynamics of intron evolution, we analyzed orthologous genes from four filamentous fungal genomes and determined the pattern of intron conservation. We developed a probabilistic model to estimate the most likely rates of intron gain and loss giving rise to these observed conservation patterns. Our data reveal the surprising importance of intron gain. Between about 150 and 250 gains and between 150 and 350 losses were inferred in each lineage. We discuss one gene in particular (encoding 1-phosphoribosyl-5-pyrophosphate synthetase) that displays an unusually high rate of intron gain in multiple lineages. It has been recognized that introns are biased towards the 5′ ends of genes in intron-poor genomes but are evenly distributed in intron-rich genomes. Current models attribute this bias to 3′ intron loss through a poly-adenosine-primed reverse transcription mechanism. Contrary to standard models, we find no increased frequency of intron loss toward the 3′ ends of genes. Thus, recent intron dynamics do not support a model whereby 5′ intron positional bias is generated solely by 3′-biased intron loss
Process optimization for polishing large aspheric mirrors
ABSTRACT Large telescope mirrors have stringent requirements for surface irregularity on all spatial scales. Large scale errors, typically represented with Zernike polynomials, are relatively easy to control. Errors with smaller spatial scale can be more difficult because the specifications are tighter. Small scale errors are controlled with a combination of natural smoothing from large tools and directed figuring with precisely controlled small tools. The optimization of the complete process builds on the quantitative understanding of natural smoothing, convergence of small tool polishing, and confidence in the surface measurements. This paper provides parametric models for smoothing and directed figuring that can be used to optimize the manufacturing process
Infrared Computer-Generated Holograms: Design and Application for the WFIRST Grism Using Wavelength-Tuning Interferometry
Interferometers using computer-generated holograms (CGHs) have become the industry standard to accurately measure aspheric optics. The CGH is a diffractive optical element that can create a phase or amplitude distribution and can be manufactured with low uncertainty using modern lithographic techniques. However, these CGHs have conventionally been used with visible light and piezo-shifting interferometers. Testing the performance of transmissive optics in the infrared requires infrared CGHs and an infrared interferometer. Such an instrument is used in this investigation, which introduces its phase shift via wavelength-tuning. A procedure on how to design and manufacture infrared CGHs and how these were successfully used to model and measure the Wide-Field Infrared Survey Telescope grism elements is provided. Additionally, the paper provides a parametric model, simulation results, and calculations of the errors and measurements that come about when interferometers introduce a phase variation via wavelength-tuning interferometry to measure precision aspheres
Image processing as state reconstruction in optics
The image reconstruction of partially coherent light is interpreted as the
quantum state reconstruction. The efficient method based on maximum-likelihood
estimation is proposed to acquire information from registered intensity
measurements affected by noise. The connection with totally incoherent image
restoration is pointed out. The feasibility of the method is demonstrated
numerically. Spatial and correlation details significantly smaller than the
diffraction limit are revealed in the reconstructed pattern.Comment: 10 pages, 5 figure
Optimisation of grolishing freeform surfaces with rigid and semi-rigid tools
After the formal acceptance of our fabrication of E-ELT segments, we aim to further accelerate the mass production by introducing an intermediate grolishing procedure using industrial robots, reducing the total process time by this much faster and parallel link. In this paper, we have presented research outputs on tool design, tool path generation, study of mismatch between rigid, semi-rigid tool and aspheric surface. It is indicated that the generation of mid-spatial frequency is proportional to the grit size and misfit between work piece and tool surfaces. Using a Non-Newtonian material tool with a spindle speed of 30 rpm has successfully reduce the mid-spatial error. The optimization of process parameters involve the study the combination effects of the above factors. These optimized parameters will result in a lookup table for reference of given input surface quality. Future work may include the higher spindle speed for grolishing with non- Newtonian tool looking for potential applications regarding to form correction, higher removal rate and edge contro
- …