33 research outputs found

    Seafloor biodiversity of Canada's three oceans: patterns, hotspots and potential drivers

    Get PDF
    Aim We examined the relationships between bathymetry, latitude and energy and the diversity of marine benthic invertebrates across wide environmental ranges of Canada's three oceans. Location Canadian Pacific, Arctic and Atlantic Oceans from the intertidal zone to upper bathyal depths, encompassing 13 marine ecoregions. Methods We compiled 35 benthic datasets that encompass 3,337 taxa (70% identified to species and 21% to genus) from 13,172 samples spanning 6,117 sites. Partitioning the analyses by different gear types, ecoregions or sites, we used Hill numbers to examine spatial patterns in α‐diversity. We used resampling and extrapolation to standardized sampling effort and examined the effects of depth, latitude, chemical energy (export particulate organic carbon [POC] flux), thermal energy (bottom temperature) and seasonality of primary production on the benthic biodiversity. Results The Canadian Arctic harboured the highest benthic diversity (e.g. epifauna and common and dominant infauna species), whereas the lowest diversity was found in the Atlantic. The Puget Trough (Pacific), Beaufort Sea, Arctic Archipelago, Hudson Bay, Northern Labrador and Southern Grand Bank (Atlantic) were the “hotspots" of diversity among the ecoregions. The infauna and epifauna both exhibited hump‐shaped diversity–depth relationships, with peak diversity near shelf breaks; latitude (positively) predicted infaunal diversity, albeit weakly. Food supply, as inferred from primary production and depth, was more important than thermal energy in controlling diversity patterns. Limitations with respect to calculating POC flux in coastal (e.g. terrestrial runoff) and ice‐covered regions or biological interactions may explain the negative POC flux–infaunal diversity relationship. Main Conclusions We show previously unreported diversity hotspots in the Canadian Arctic and in other ecoregions. Our analyses reveal potential controlling mechanisms of large‐scale benthic biodiversity patterns in Canada's three oceans, which are inconsistent with the prevailing view of seafloor energy–diversity relationships. These results provide insightful information for conservation that can help to implement further MPA networks

    The BenBioDen database, a global database for meio-, macro- and megabenthic biomass and densities

    Get PDF
    Benthic fauna refers to all fauna that live in or on the seafloor, which researchers typically divide into size classes meiobenthos (32/64 µm–0.5/1 mm), macrobenthos (250 µm–1 cm), and megabenthos (>1 cm). Benthic fauna play important roles in bioturbation activity, mineralization of organic matter, and in marine food webs. Evaluating their role in these ecosystem functions requires knowledge of their global distribution and biomass. We therefore established the BenBioDen database, the largest open-access database for marine benthic biomass and density data compiled so far. In total, it includes 11,792 georeferenced benthic biomass and 51,559 benthic density records from 384 and 600 studies, respectively. We selected all references following the procedure for systematic reviews and meta-analyses, and report biomass records as grams of wet mass, dry mass, or ash-free dry mass, or carbon per m2 and as abundance records as individuals per m2. This database provides a point of reference for future studies on the distribution and biomass of benthic fauna

    Phosphorothioate antisense oligonucleotides induce the formation of nuclear bodies

    Get PDF
    Antisense oligonucleotides are powerful tools for the in vivo regulation of gene expression. We have characterized the intracellular distribution of fluorescently tagged phosphorothioate oligodeoxynucleotides (PS-ONs) at high resolution under conditions in which PS-ONs have the potential to display antisense activity. Under these conditions PS-ONs predominantly localized to the cell nucleus where they accumulated in 20-30 bright spherical foci designated phosphorothioate bodies (PS bodies), which were set against a diffuse nucleoplasmic population excluding nucleoli. PS bodies are nuclear structures that formed in cells after PS-ON delivery by transfection agents or microinjection but were observed irrespectively of antisense activity or sequence. Ultrastructurally, PS bodies corresponded to electron-dense structures of 150-300 nm diameter and resembled nuclear bodies that were found with lower frequency in cells lacking PS-ONs. The environment of a living cell was required for the de novo formation of PS bodies, which occurred within minutes after the introduction of PS-ONs. PS bodies were stable entities that underwent noticeable reorganization only during mitosis. Upon exit from mitosis, PS bodies were assembled de novo from diffuse PS-ON pools in the daughter nuclei. In situ fractionation demonstrated an association of PS-ONs with the nuclear matrix. Taken together, our data provide evidence for the formation of a nuclear body in cells after introduction of phosphorothioate oligodeoxynucleotides

    A review of zooplankton and deep carbon fixation contributions to carbon cycling in the dark ocean

    No full text
    Models of the marine carbon cycle assume that virtually all heterotrophic production in the open ocean is derived from near-surface carbon fixation (primary production) by phytoplankton. However, current carbon budget estimates show that respiration throughout the ocean far exceeds surface primary production. This disconnect can be grouped into two categories: Inaccurate estimates of water column respiration and carbon transport from metazoans; and missing primary production sources and. heterotrophic processing in the dark ocean. In this review, we examine the contribution to the ocean carbon cycle of chemoautotrophic production, as well as secondary production and respiration from meso-zooplankton and micro-nekton below 400 m depth. About one-third of epipelagic biomass in the ocean migrates diurnally, distributing dissolved organic carbon (DOC) and total nitrogen (TN), along with about 30–80% of the particulate organic carbon (POC) flux, from the upper ocean. Although mostly this occurs in the upper 400 m, migration depths can extend to 3000 m. In addition, up to 80% of the biomass of secondary consumers in the open ocean live part of their life cycle at depths up to 2000 m, contributing significantly to deep-sea respiration and particle flux, particularly over fall/winter in temperate-subarctic oceans, submarine canyons, and deep seas such as the Mediterranean. This active flux provides fresh organic input to the deep ocean at a time of year when surface primary productivity, and thus organic carbon (OC) flux to the deep ocean, is low. The complex spatial, temporal and depth scales of horizontal and vertical migration make modelling of the global oceanic carbon cycle extremely complex, requiring consideration of biomass movements throughout the entire water column over diurnal, lunar and seasonal cycles over broad geographic regions. An additional 10 to 50% of surface primary production occurs within mid-depth oxygen minimum zones (OMZs), fuelled by ammonia excreted from vertically migrating zooplankton concentrated near OMZ boundaries. Crustal sources such as gas and methane seeps, hydrothermal vents and submarine volcanoes support active deep-sea food webs, as well as contributing to upper ocean productivity. Crustal sources are conservatively estimated to provide >30%, and probably up to 50%, of oceanic OC flux to the dark ocean. These estimates are still poorly constrained but can no longer be ignored in global oceanic carbon cycles

    Uptake of PCBs into sediment dwellers and trophic transfer in relation to sediment conditions in the Salish Sea

    No full text
    We examined uptake of polychlorinated biphenyls (PCBs) into various marine sediment feeders relative to physical and geochemical factors and transfer to higher trophic levels. PCBs exceeding Canadian Council Ministers of the Environment Guidelines by 6-55x were found in industrialized harbours and some near-outfall sediments, indicating ongoing land input. Sediment PCBs were correlated with organic flux and content. Tissue PCBs were >10x sediment PCBs in all samples and highest in Victoria Harbour infauna, suggesting considerable uptake from these extremely contaminated, organically enriched, chronically disturbed sediments. Sediment PCBs were the primary predictor of tissue lipid PCBs followed by %fines. This results in generally higher tissue PCBs in more depositional regions. The lipid/sediment PCBs (uptake rate) declined with increasing sediment PCBs, acid volatile sulfides and benthos biomass turnover. PCB homologue composition did not change with uptake from sediments or at higher trophic levels, suggesting minimal metabolization in tissues. Trophic bio-magnification occurs since lipid PCBs were 2-100x higher in seal blubber than sediment feeders. PCBs were compared with polybrominated diphenyl ethers (PBDEs) for the same samples. PCBs were highest in industrialized harbours, whereas PBDEs were elevated in harbours but highest near wastewater discharges. This reflects differences in usage history, sediment dynamics, and affinities. PCBs appear to be more bio-accumulative and persistent at higher trophic levels than PBDEs

    Size Structure of Marine Soft-Bottom Macrobenthic Communities across Natural Habitat Gradients: Implications for Productivity and Ecosystem Function

    Get PDF
    <div><p>Size distributions of biotic assemblages are important modifiers of productivity and function in marine sediments. We investigated the distribution of proportional organic biomass among logarithmic size classes (2<sup>−6</sup>J to 2<sup>16</sup>J) in the soft-bottom macrofaunal communities of the Strait of Georgia, Salish Sea on the west coast of Canada. The study examines how size structure is influenced by 3 fundamental habitat descriptors: depth, sediment percent fines, and organic flux (modified by quality). These habitat variables are uncorrelated in this hydrographically diverse area, thus we examine their effects in combination and separately. Cluster analyses and cumulative biomass size spectra reveal clear and significant responses to each separate habitat variable. When combined, habitat factors result in three distinct assemblages: (1) communities with a high proportion of biomass in small organisms, typical of shallow areas (<10 m) with coarse sediments (<10% fines) and low accumulation of organic material (<3.0 gC/m<sup>2</sup>/yr/δ<sup>15</sup>N); (2) communities with high proportion of biomass in the largest organisms found in the Strait, typical of deep, fine sediments with high modified organic flux (>3 g C/m<sup>2</sup>/yr/δ<sup>15</sup>N) from the Fraser River; and (3) communities with biomass dominated by moderately large organisms, but lacking the smallest and largest size classes, typical of deep, fine sediments experiencing low modified organic flux (<3.0 gC/m<sup>2</sup>/yr/δ<sup>15</sup>N). The remaining assemblages had intermediate habitat types and size structures. Sediment percent fines and flux appear to elicit threshold responses in size structure, whereas depth has the most linear influence on community size structure. The ecological implications of size structure in the Strait of Georgia relative to environmental conditions, secondary production and sediment bioturbation are discussed.</p> </div

    Towards Predicting Basin-Wide Invertebrate Organic Biomass and Production in Marine Sediments from a Coastal Sea

    Get PDF
    <div><p>Detailed knowledge of environmental conditions is required to understand faunal production in coastal seas with topographic and hydrographic complexity. We test the hypothesis that organic biomass and production of subtidal sediment invertebrates throughout the Strait of Georgia, west coast of Canada, can be predicted by depth, substrate type and organic flux modified to reflect lability and age of material. A basin-wide database of biological, geochemical and flux data was analysed using an empirical production/biomass (P/B) model to test this hypothesis. This analysis is unique in the spatial extent and detail of P/B and concurrent environmental measurements over a temperate coastal region. Modified organic flux was the most important predictor of organic biomass and production. Depth and substrate type were secondary modifiers. Between 69–74% of variability in biomass and production could be explained by the combined environmental factors. Organisms <1 mm were important contributors to biomass and production primarily in shallow, sandy sediments, where high P/B values were found despite low organic flux. Low biomass, production, and P/B values were found in the deep, northern basin and mainland fjords, which had silty sediments, low organic flux, low biomass of organisms <1 mm, and dominance by large, slow-growing macrofauna. In the highest organic flux and biomass areas near the Fraser River discharge, production did not increase beyond moderate flux levels. Although highly productive, this area had low P/B. Clearly, food input is insufficient to explain the complex patterns in faunal production revealed here. Additional environmental factors (depth, substrate type and unmeasured factors) are important modifiers of these patterns. Potential reasons for the above patterns are explored, along with a discussion of unmeasured factors possibly responsible for unexplained (30%) variance in biomass and production. We now have the tools for basin-wide first-order estimates of sediment invertebrate production.</p> </div

    Sampling region (Strait of Georgia) showing general areas and number of benthic invertebrate samples along with bottom bathymetry based on multibeam data (a) (courtesy of Natural Resources Canada).

    No full text
    <p>The indicated boundary between the Northern and Southern Straits relates to the limitations of influence to sediments from the Fraser River discharge; and b) Core and sediment trap locations for organic flux measurements (see <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0040295#pone.0040295.s003" target="_blank">Table S2</a> for sources and dates of cores).</p

    Lin’s concordance test between habitat variables.

    No full text
    <p>Lin’s concordance test between habitat variables.</p
    corecore