48 research outputs found

    An environmental evaluation of food waste downstream management options: a hybrid LCA approach

    Get PDF
    Food waste treatment methods have been typically analysed using current energy generation conditions. To correctly evaluate treatment methods, they must be compared under existing and potential decarbonisation scenarios. This paper holistically quantifies the environmental impacts of three food waste downstream management options—incineration, composting, and anaerobic digestion (AD). Methods The assessment was carried out using a novel hybrid input–output-based life cycle assessment method (LCA), for 2014, and in a future decarbonised economy. The method introduces expanded system boundaries which reduced the level of incompleteness, a previous limitation of process-based LCA. Results Using the 2014 UK energy mix, composting achieved the best score for seven of 14 environmental impacts, while AD scored second best for ten. Incineration had the highest environmental burdens in six impacts. Uncertainties in the LCA data made it difficult determine best treatment option. There was significant environmental impact from capital goods, meaning current treatment facilities should be used for their full lifespan. Hybrid IO LCA’s included additional processes and reduced truncation error increasing overall captured environmental impacts of composting, AD, and incineration by 26, 10 and 26%, respectively. Sensitivity and Monte Carlo analysis evaluate the methods robustness and illustrate the uncertainty of current LCA methods. Major implication: hybrid IO-LCA approaches must become the new norm for LCA. Conclusion This study provided a deeper insight of the overall environmental performance of downstream food waste treatment options including ecological burdens associated with capital goods. Keywords Anaerobic digestion Incineration Composting Food waste Hybrid life cycle assessment Capital good

    A Lower Dose Threshold for the In Vivo

    No full text

    ENVIRONMENTAL DESIGN GUIDELINES FOR LOW CRESTED COASTAL STRUCTURES

    No full text
    The effect of manmade activities is primarily local but can extend far away from the location of intervention. This underlines the importance of establishing coastal zone management plans covering large stretches of coastlines. In recent years, interest in Low Crested Structures (coastal defense structures with a low-crest) has been growing together with awareness of the sensitivity to environmental impacts produced by coastal defenses. The relation between wave climate, beach erosion, beach defence means, habitat changes and beach value, which clearly exists based on EC research results, suggests the necessity of an integrated approach when designing coastal protection schemes. In accordance with this need, the present design guidelines cover structure stability and construction problems, hydro and morphodynamic effects, environmental effects (colonisation of the structure and water quality), societal and economic impacts (recreational benefits, swimming safety, beach quality). Environmental Design Guidelines for Low Crested Coastal Structures is specifically dedicated to Low Crested Structures, and provides methodological tools both for the engineering design of structures and for the prediction of performance and environmental impacts of such structures. A briefing of current best practice for local and national planning authorities, statutory agencies and other stakeholders in the coastal zone is also covered. Presented in a generic way, this book is appropriate throughout the European Union, taking into account current European Commission policy and directives for the promotion of sustainable development and integrated coastal zone management
    corecore