145 research outputs found

    Structural and molecular basis of the assembly of the TRPP2/PKD1 complex

    Get PDF
    Mutations in PKD1 and TRPP2 account for nearly all cases of autosomal dominant polycystic kidney disease (ADPKD). These 2 proteins form a receptor/ion channel complex on the cell surface. Using a combination of biochemistry, crystallography, and a single-molecule method to determine the subunit composition of proteins in the plasma membrane of live cells, we find that this complex contains 3 TRPP2 and 1 PKD1. A newly identified coiled-coil domain in the C terminus of TRPP2 is critical for the formation of this complex. This coiled-coil domain forms a homotrimer, in both solution and crystal structure, and binds to a single coiled-coil domain in the C terminus of PKD1. Mutations that disrupt the TRPP2 coiled-coil domain trimer abolish the assembly of both the full-length TRPP2 trimer and the TRPP2/PKD1 complex and diminish the surface expression of both proteins. These results have significant implications for the assembly, regulation, and function of the TRPP2/PKD1 complex and the pathogenic mechanism of some ADPKD-producing mutations

    Inhibiting cyclin-dependent kinase 5 in the nucleus accumbens enhances the expression of amphetamine-induced locomotor conditioning

    Get PDF
    When psychostimulant drugs like amphetamine are administered repeatedly in the presence of a contextual stimulus complex, long-lasting associations form between the unconditioned effects of the drug and the contextual stimuli. Here we assessed the role played by the proline-directed serine/threonine kinase cyclin-dependent kinase 5 (Cdk5) in the nucleus accumbens (NAcc) on the expression of the conditioned locomotion normally observed when rats are returned to a context previously paired with amphetamine. Infusing the Cdk5 inhibitor roscovitine (40 nmol/0.5µl/side) into the NAcc 30-min before the test for conditioning significantly enhanced the conditioned locomotor response observed in rats previously administered amphetamine in the test environment. This effect was specific to the expression of a conditioned response as inhibiting Cdk5 produced no effect in control rats previously administered saline or previously administered amphetamine elsewhere. As inhibiting Cdk5 during exposure to amphetamine has been found to block the accrual of locomotor conditioning, the present results suggest distinct roles for NAcc Cdk5 in the induction and expression of excitatory conditioning by amphetamine

    Locomotor conditioning by amphetamine requires cyclin-dependent kinase 5 signaling in the nucleus accumbens

    Get PDF
    Intermittent systemic exposure to psychostimulants such as amphetamine leads to several forms of long-lasting behavioral plasticity including non-associative sensitization and associative conditioning. In the nucleus accumbens (NAcc), the protein serine/threonine kinase cyclin-dependent kinase 5 (Cdk5) and its phosphorylation target, the guanine-nucleotide exchange factor kalirin-7 (Kal7), may contribute to the neuroadaptations underlying each of these forms of plasticity. Pharmacological inhibition of Cdk5 in the NAcc prevents the increases in dendritic spine density in this site and enhances the locomotor sensitization normally observed following repeated cocaine. Mice lacking the Kal7 gene display similar phenotypes suggesting that locomotor sensitization and increased NAcc spine density need not be positively correlated. As increases in spine density may relate to the formation of associative memories and both Cdk5 and Kal7 regulate the generation of spines following repeated drug exposure, we hypothesized that either inhibiting Cdk5 or preventing its phosphorylation of Kal7 in the NAcc may prevent the induction of drug conditioning. In the present experiments, blockade in rats of NAcc Cdk5 activity with roscovitine (40 nmol/0.5µl/side) prior to each of 4 injections of amphetamine (1.5 mg/kg; i.p.) prevented the accrual of contextual locomotor conditioning but spared the induction of locomotor sensitization as revealed on tests conducted one week later. Similarly, transient viral expression in the NAcc exclusively during amphetamine exposure of a threonine-alanine mutant form of Kal7 [mKal7(T1590A)] that is not phosphorylated by Cdk5 also prevented the accrual of contextual conditioning and spared the induction of sensitization. These results indicate that Cdk5 phosphorylation of Kal7 in the NAcc is necessary for the formation of context-drug associations potentially through the modulation of dendritic spine dynamics in this site

    Interaction of Bestrophin-1 and Ca2+ Channel β-Subunits: Identification of New Binding Domains on the Bestrophin-1 C-Terminus

    Get PDF
    Bestrophin-1 modulates currents through voltage-dependent L-type Ca2+ channels by physically interacting with the β-subunits of Ca2+ channels. The main function of β-subunits is to regulate the number of pore-forming CaV-subunits in the cell membrane and modulate Ca2+ channel currents. To understand the influence of full-length bestrophin-1 on β-subunit function, we studied binding and localization of bestrophin-1 and Ca2+ channel subunits, together with modulation of CaV1.3 Ca2+ channels currents. In heterologeous expression, bestrophin-1 showed co-immunoprecipitation with either, β3-, or β4-subunits. We identified a new highly conserved cluster of proline-rich motifs on the bestrophin-1 C-terminus between amino acid position 468 and 486, which enables possible binding to SH3-domains of β-subunits. A bestrophin-1 that lacks these proline-rich motifs (ΔCT-PxxP bestrophin-1) showed reduced efficiency to co-immunoprecipitate with β3 and β4-subunits. In the presence of ΔCT-PxxP bestrophin-1, β4-subunits and CaV1.3 subunits partly lost membrane localization. Currents from CaV1.3 subunits were modified in the presence of β4-subunit and wild-type bestrophin-1: accelerated time-dependent activation and reduced current density. With ΔCTPxxP bestrophin-1, currents showed the same time-dependent activation as with wild-type bestrophin-1, but the current density was further reduced due to decreased number of Ca2+ channels proteins in the cell membrane. In summary, we described new proline-rich motifs on bestrophin-1 C-terminus, which help to maintain the ability of β-subunits to regulate surface expression of pore-forming CaV Ca2+-channel subunits

    Alternative RNA splicing: contribution to pain and potential therapeutic strategy

    Get PDF
    Since the sequencing of metazoan genomes began, it has become clear that the number of expressed proteins far exceeds the number of genes. It is now estimated that greater up to 98% of human genes give rise to multiple proteins through alternative pre-mRNA splicing. This review highlights the known alternative splice variants of many channels, receptors and growth factors important in nociception and pain. Recently, pharmacological control of alternative splicing has been proposed as potential therapy in cancer, wet age-related macular degeneration, retroviral infections and pain. In this review we consider the effects that known splice variants of molecules key to nociception/pain have on nociceptive processing and/or analgesic action, and the potential for control of alternative pre-mRNA splicing as a novel analgesic strategy

    Transcriptional profile of breast muscle in heat stressed layers is similar to that of broiler chickens at control temperature

    Get PDF
    Abstract Background In recent years, the commercial importance of changes in muscle function of broiler chickens and of the corresponding effects on meat quality has increased. Furthermore, broilers are more sensitive to heat stress during transport and at high ambient temperatures than smaller egg-laying chickens. We hypothesised that heat stress would amplify muscle damage and expression of genes that are involved in such changes and, thus, lead to the identification of pathways and networks associated with broiler muscle and meat quality traits. Broiler and layer chickens were exposed to control or high ambient temperatures to characterise differences in gene expression between the two genotypes and the two environments. Results Whole-genome expression studies in breast muscles of broiler and layer chickens were conducted before and after heat stress; 2213 differentially-expressed genes were detected based on a significant (P < 0.05) genotype × treatment interaction. This gene set was analysed with the BioLayout Express3D and Ingenuity Pathway Analysis software and relevant biological pathways and networks were identified. Genes involved in functions related to inflammatory reactions, cell death, oxidative stress and tissue damage were upregulated in control broilers compared with control and heat-stressed layers. Expression of these genes was further increased in heat-stressed broilers. Conclusions Differences in gene expression between broiler and layer chickens under control and heat stress conditions suggest that damage of breast muscles in broilers at normal ambient temperatures is similar to that in heat-stressed layers and is amplified when broilers are exposed to heat stress. The patterns of gene expression of the two genotypes under heat stress were almost the polar opposite of each other, which is consistent with the conclusion that broiler chickens were not able to cope with heat stress by dissipating their body heat. The differentially expressed gene networks and pathways were consistent with the pathological changes that are observed in the breast muscle of heat-stressed broilers

    Open-State Occupancy Prevents Gating Charge Relaxation of N-type (CaV2.2) Calcium Channels

    Get PDF
    N-type and L-type channels have significant gating differences, and we wondered whether some of these differences are linked to the relationship between charge movement and channel opening. The time constants for N-channel closing (τDeact) and Off-gating charge movement (τQOff) were compared over a range of voltages. τQOff was significantly larger than τDeact at voltages < −10 mV, and the voltage dependence of the τQOff was less steep than that for τDeact, which suggests that gating charge relaxation does not limit channel closing. Roscovitine, a drug that slows N-channel closing by holding the channel in a high open-probability state, was found to slow both τQOff and τDeact, and thus the time courses of channel closing and gating charge relaxation were similar. Our gating current results were reproduced with the addition of a voltage-independent, closed-closed transition to our previously published two-open-state N-channel model. This work suggests that, like L-type channels, there is a voltage-independent transition along the N-channel activation/deactivation pathway, but this transition occurs between closed states instead of the closed-open states of the L-channel. Also unlike L-type channels, the gating charge appears to be locked into the activated position by the N-channel open state
    • …
    corecore