6,229 research outputs found

    Detailed Simulation of the Cochlea: Recent Progress Using Large Shared Memory Parallel Computers

    Get PDF
    We have developed and are refining a detailed three-dimensional computational model of the human cochlea. The model uses the immersed boundary method to calculate the fluid-structure interactions produced in response to incoming sound waves. An accurate cochlear geometry obtained from physical measurements is incorporated. The model includes a detailed and realistic description of the various elastic structures present. Initially, a macro-mechanical computational model was developed for execution on a CRAY T90 at the San Diego Supercomputing Center. This code was ported to the latest generation of shared memory high performance servers from Hewlett Packard. Using compiler generated threads and OpenMP directives, we have achieved a high degree of parallelism in the executable, which has made possible to run several large scale numerical simulation experiments to study the interesting features of the cochlear system. In this paper, we outline the methods, algorithms and software tools that were used to implement and fine tune the code, and discuss some of the simulation results

    Sensitivity of a Bolometric Interferometer to the CMB power spectrum

    Full text link
    Context. The search for B-mode polarization fluctuations in the Cosmic Microwave Background is one of the main challenges of modern cosmology. The expected level of the B-mode signal is very low and therefore requires the development of highly sensitive instruments with low systematic errors. An appealing possibility is bolometric interferometry. Aims. We compare in this article the sensitivity on the CMB angular power spectrum achieved with direct imaging, heterodyne and bolometric interferometry. Methods. Using a simple power spectrum estimator, we calculate its variance leading to the counterpart for bolometric interferometry of the well known Knox formula for direct imaging. Results. We find that bolometric interferometry is less sensitive than direct imaging. However, as expected, it is finally more sensitive than heterodyne interferometry due to the low noise of the bolometers. It therefore appears as an alternative to direct imagers with different and possibly lower systematic errors, mainly due to the absence of an optical setup in front of the horns.Comment: 5 pages, 3 figures. This last version matches the published version (Astronomy and Astrophysics 491 3 (2008) 923-927). Sensitivity of Heterodyne Interferometers modified by a factor of tw

    Drying Rate Constants for Yellow Dent Corn as Affected by Fatty Acid Ester Treatments

    Get PDF
    Ethyl oleate and ethyl stearate solutions at various concentrations were used to treat corn samples prior to drying

    Setting priorities to inform assessment of care homes’ readiness to participate in healthcare innovation: a systematic mapping review and consensus process

    Get PDF
    © 2020 The Author(s). This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly citedOrganisational context is known to impact on the successful implementation of healthcare initiatives in care homes. We undertook a systematic mapping review to examine whether researchers have considered organisational context when planning, conducting, and reporting the implementation of healthcare innovations in care homes. Review data were mapped against the Alberta Context Tool, which was designed to assess organizational context in care homes. The review included 56 papers. No studies involved a systematic assessment of organisational context prior to implementation, but many provided post hoc explanations of how organisational context affected the success or otherwise of the innovation. Factors identified to explain a lack of success included poor senior staff engagement, non-alignment with care home culture, limited staff capacity to engage, and low levels of participation from health professionals such as general practitioners (GPs). Thirty-five stakeholders participated in workshops to discuss findings and develop questions for assessing care home readiness to participate in innovations. Ten questions were developed to initiate conversations between innovators and care home staff to support research and implementation. This framework can help researchers initiate discussions about health-related innovation. This will begin to address the gap between implementation theory and practice.Peer reviewe

    Mosaicking with cosmic microwave background interferometers

    Get PDF
    Measurements of cosmic microwave background (CMB) anisotropies by interferometers offer several advantages over single-dish observations. The formalism for analyzing interferometer CMB data is well developed in the flat-sky approximation, valid for small fields of view. As the area of sky is increased to obtain finer spectral resolution, this approximation needs to be relaxed. We extend the formalism for CMB interferometry, including both temperature and polarization, to mosaics of observations covering arbitrarily large areas of the sky, with each individual pointing lying within the flat-sky approximation. We present a method for computing the correlation between visibilities with arbitrary pointing centers and baselines and illustrate the effects of sky curvature on the l-space resolution that can be obtained from a mosaic.Comment: 9 pages; submitted to Ap

    Systematic Errors in Cosmic Microwave Background Interferometry

    Get PDF
    Cosmic microwave background (CMB) polarization observations will require superb control of systematic errors in order to achieve their full scientific potential, particularly in the case of attempts to detect the B modes that may provide a window on inflation. Interferometry may be a promising way to achieve these goals. This paper presents a formalism for characterizing the effects of a variety of systematic errors on interferometric CMB polarization observations, with particular emphasis on estimates of the B-mode power spectrum. The most severe errors are those that couple the temperature anisotropy signal to polarization; such errors include cross-talk within detectors, misalignment of polarizers, and cross-polarization. In a B mode experiment, the next most serious category of errors are those that mix E and B modes, such as gain fluctuations, pointing errors, and beam shape errors. The paper also indicates which sources of error may cause circular polarization (e.g., from foregrounds) to contaminate the cosmologically interesting linear polarization channels, and conversely whether monitoring of the circular polarization channels may yield useful information about the errors themselves. For all the sources of error considered, estimates of the level of control that will be required for both E and B mode experiments are provided. Both experiments that interfere linear polarizations and those that interfere circular polarizations are considered. The fact that circular experiments simultaneously measure both linear polarization Stokes parameters in each baseline mitigates some sources of error.Comment: 19 pages, 9 figures, submitted to Phys. Rev.

    Proceedings of the Spacecraft Charging Technology Conference: Executive Summary

    Get PDF
    Aerospace environments are reviewed in reference to spacecraft charging. Modelling, a theoretical scheme which can be used to describe the structure of the sheath around the spacecraft and to calculate the charging currents within, is discussed. Materials characterization is considered for experimental determination of the behavior of typical spacecraft materials when exposed to simulated geomagnetic substorm conditions. Materials development is also examined for controlling and minimizing spacecraft charging or at least for distributing the charge in an equipotential manner, using electrical conductive surfaces for materials exposed to space environment

    Search for the standard model Higgs boson in the H → ZZ → ℓ^+ℓ^−τ^+τ^− decay channel in pp collisions at √s = 7 TeV

    Get PDF
    A search is reported for the standard model Higgs boson in the H → ZZ → ℓ^+ℓ^−τ^+τ^− decay mode, where ℓ = μ or e, in proton-proton collisions at √s = 7TeV , corresponding to an integrated luminosity of 4.7 fb^(−1) collected with the CMS detector at the LHC. No evidence is found for a significant deviation from the background expectation. An upper limit four to twelve times larger than the predicted value is set at 95% confidence level for the product of the standard model Higgs boson production cross section and decay branching fraction in the mass range 190 < m_H < 600 GeV
    corecore