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Abstract 
The decarbonisation of electricity generation presents policy-makers in many countries with the 
delicate task of balancing initiatives for technological change whilst maintaining a commitment to 
market liberalisation. Despite the theoretical attractions, it has become doubtful whether carbon 
markets by themselves can offer the desired solution.  We address this question through an integrated 
modelling framework, stylised for the GB power market within the EU ETS, which includes three 
distinct components: (a) long-term least-cost capacity planning, similar in functionality to many used 
in policy analysis, but innovative in providing the endogenous calculation of carbon prices; (b) short-
term price risk analysis producing hourly dispatch and pricing outputs, which are used to test the 
annual financial performance metrics implied by the longer-term investments; (c) agent-based 
computational learning to derive pricing behaviour in imperfect markets.  The results indicate that the 
risk/return profile of electricity markets may deteriorate substantially as a result of decarbonisation, 
reducing the propensity of companies to invest in the absence of increased government support and/or 
more beneficial market circumstances.  Markets may adjust, if allowed, by deferring investment until 
conditions improve, or by consolidating to increase market power, or by operating in a tighter market 
with reduced spare capacity. To the extent that each of these ‘market-led’ solutions may be politically 
unpalatable, policy design will need to sustain a delicate regulatory regime, moderating the possible 
increased market power of companies whilst maintaining low-carbon subsidies for longer than 
expected.  This paper considers some of the modelling implications for this compromise. 
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1. Introduction 
Long-term targets for reducing the carbon intensity in the EU envisage a progressive move to full 
decarbonisation of the electricity sector by 2050, with several member states aiming to be close to this 
by 2030. Similar policy trends are emerging, with various ambitions and degrees of commitment, 
from many countries worldwide. What this implies, as a consequence, for the price formation process 
in the wholesale electricity market is unclear, but apparently radical. Although a substantial amount of 
research has considered the operational implications of a high proportion of wind and other renewable 
generation  for power system security, transmission investment and system operations, basic questions 
remain on how competitive wholesale markets should be supplemented by subsidies or other market 
mechanisms to incentivise  both the emergent low carbon technologies and maintain resource 
adequacy. 

Market-based approaches to electricity decarbonisation rely upon incentives. Their effectiveness is 
therefore as much a function of behaviour as it is of fundamental economics, and the dynamic aspects 
of this process are crucial. Several regional and national Governments have been motivated, either 
individually or collectively, to create carbon markets, but it has become an open question if carbon 
markets by themselves are sufficient to motivate efficient decarbonisation in a liberalised context5.   
From an incentives perspective, a crucial complication is that the dynamic properties of carbon prices 
depend endogenously upon the investments which the prices seek to stimulate. Furthermore, the 
investment models widely used for policy formulation often do not include risk considerations in the 
propensity of agents to invest, nor do risk models of wholesale price formation generally include 
considerations of oligopoly behaviour, or the feedback of risk into the evolution of the system as a 
whole.  

All of which raises interrelated questions on how policy interventions and subsidies can be 
appropriately formulated and, in particular, whether carbon and electricity “energy-only” markets can 
co-evolve in a substantially liberalised manner to meet these policy targets. To address these 
complications in market design, we use an integrated model-based analysis which links three distinct 
modules: (a) long-term least-cost capacity planning, similar in functionality to many used in policy 
analysis, but innovative in providing the endogenous calculation of carbon prices with temporal 
arbitrage; (b) short-term price risk analysis producing hourly dispatch and pricing outputs, which are 
used to test the annual financial performance risks, as implied by the longer-term investments, using 
metrics consistent with lender considerations; and (c) agent-based computational learning to derive 
pricing behaviour in the more realistic setting of imperfect market competition.   

It should be emphasised that in seeking to address these considerations in general, in order to be 
grounded in our analysis, we calibrated our model to the UK and European situation in 2012, but we 
are not addressing particular issues resulting from the economic recession of 2008-2012, or the over-
supply of allowances in the EU-ETS, or various support measures for renewable technologies, or 
making forecasts, but rather seeking to examine the basic principles driving the interaction of carbon 
and electricity markets in a realistic but stylised setting. 

                                                           
5 By 2014, carbon prices in the EU, from highs of around €37/tonne in 2008, had become so low, at below €5/tonne, that their effect on 
investment was becoming marginal. This price crash was due to the post 2008 recession making the EU-wide carbon cap easily attainable 
and the increased support policies for renewable technologies and energy efficiency creating less abatement for the carbon market to achieve 
(as analysed in Blyth et al, 2009). Nevertheless, insofar as the post- recession EU-ETS prices should eventually recover and other countries 
and regions have been introducing carbon trading, and as a counterfactual to the mixture of other subsidies in the expectation that subsidy 
interventions are usually meant to be transient, this price collapse should not negate a need to understand the basic properties of the joint 
evolution of carbon and electricity markets over time. 
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2. Context of the Research  
The effects of rapid structural changes, market reforms and innovations on the risks and financial 
performances of both existing and prospective assets, are crucial to market participants and policy 
makers. Thus, it is now widely recognised that the increased penetration of wind and solar generation 
has led, and will continue to lead, to substantial changes in the wholesale market dynamics with 
greater price volatility and different operational regimes for existing power plants (e.g. Sàenz de 
Miera et al., 2008; Sensfuß et al., 2008; Pöyry, 2009; Green and Vasilakos, 2010, Hirth, 2012). More 
fundamentally, with greater penetration of renewables, and perhaps nuclear, questions on the ability 
of the typical wholesale market for energy to deliver attractive returns for investors have been raised 
and, in GB, motivated proposals for market reform in which a guiding principle was the need to “de-
risk” (sic) new investment in low carbon technologies and adequate reserves (DECC, 2011a).  

A substantial amount of research has already looked at the properties of renewable investment and 
their effects on wholesale power markets, including lower average prices, higher volatility and a 
declining incremental wind value as decarbonisation progresses (following the “merit order” effect as 
higher price-setting plant is pushed out of normal price-setting), e.g. Sensfuß et al.(2008), Obersteiner 
et al (2010), Gowrisankaran et al (2011), Hirth (2012). A key observation in this theme of work has 
been the increasing divergence between the average price that an intermittent producer can achieve 
compared to that of a firm producer, due to periods of high renewable output depressing prices.  That 
feature is extended in the work reported here with a focus more specifically upon the risk/return 
profile for new and existing assets in the power sector, as it undergoes radical decarbonisation.   

Risk and its impact on investment decisions has also been extensively analysed from a portfolio 
perspective (e.g. Awerbuch, 2006, Bazilian & Roques, 2008) and, with respect to the timing, synergy 
and operational flexibility of investments, from a real options perspective (Keppo et al, 2003, Fleten 
et al, Yang et al, 2008; 2009, Reuter et al, 2012). But how investment risks and returns may change 
over the lifetimes of investments, as wholesale price formation adapts to the low carbon structural 
changes, remains an open question. This is clearly a crucial aspect in understanding whether policies 
aimed at stimulating low carbon investment may, or may not, be as successful as economic analysis 
might suggest. Moreover, the risk of financial underperformance in terms of operational cash flows 
not covering financing costs is in practice explicitly evaluated as a key investment metric (CPI, 2011; 
Moody’s, 2009), and therefore, in this study, the analysis incorporates financial risk in terms of capital 
coverage as well as conventional returns on investment (as in Fortin et al, 2008; Kettunen et al, 2011). 

Investment risk depends upon revenue and cost risks and these arise over two distinct timescales. 
Over longer time periods, the market structure as well as the economic fundamentals may evolve 
radically according to various scenario assumptions. But, since the generation mix and ownership 
evolve relatively slowly, the annual electricity price-risk profile will be determined by fluctuations in 
inputs such as fuel prices, demand and wind availability. Although fuel price risk therefore plays an 
important part in both the short and long term views, the stochastic processes at play are quite 
different. Formal specifications of these processes for energy commodities appear as short term mean-
reversion to longer term fundamentals with stochastic diffusion (e.g. Lucia and Schwartz, 2002; 
Geman and Roncoroni, 2006).  This means that a financial performance risk analysis for a particular 
year will involve detailed probabilistic simulations around annual mean values, which in turn may be 
derived from the longer term scenario analyses. 
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3. An Integrated Modelling Framework 
The methodology in this research is developed to adapt the long-term capacity investment scenarios 
that result from the use of conventional, least-cost optimisation programs with the behavioural 
implications of imperfect competition (leading possibly to prices above the competitive level) and 
with some aversion to the risks of financial underperformance (leading possibly to non-investment in 
NPV positive projects if the downside risks are too high). We therefore seek to develop an integrated 
and coherent link between these three elements: least-cost planning, strategic behaviour, and risk 
analysis. Figure 1 displays the overall scheme of module linkages. The hard links between the 
modules imply that the output files of one module provide the input files for another, in the direction 
of the link, with all exogenous parameters in common. The soft links suggest that the results of a 
particular analysis may cause the user to question some of the basic assumptions and re-iterate the 
analysis.  

Figure 1. Schematic of Linkages between Modules 

 

3.1. Module 1: Long-term Least Cost Planning 
The analysis begins by developing long-term least-cost expansion plans for the electricity sector, as 
might be undertaken by a Government to embed various policy targets. In particular, given policy 
targets for carbon abatement quantities, we include endogenous consideration of carbon price 
formation through a carbon market, such as that of the EU ETS. This is distinct from most investment 
models to support policy and decision-making in the power sector, which assume either exogenous 
carbon prices, or a relatively simple carbon price formation process (e.g. based on the costs of fuel-
switching or the marginal abatement cost of some other particular abatement technology).  Similarly, 
electricity price formation is sometimes approximated by assuming that a particular technology sets 
the system marginal cost.  However, with decarbonisation, we expect deep structural changes to occur 
in the generation mix which will affect the price formation mechanisms for both carbon and 
electricity.  In other words, carbon and electricity price are at the same time drivers of, and also driven 
by, the electricity generation mix. Whilst we develop quite a stylised investment model, we contribute 
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a coherent analysis by seeking to develop carbon price trajectories with technology investment choice 
and timing determined endogenously to the overall exogenous carbon quantity caps, set as policy 
targets. As with many carbon markets, the carbon trading is intended to extend beyond a single 
electricity market, and in taking GB as an example, we need to consider carbon prices being set in the 
EU-ETS. We therefore construct a two-level formulation to understand firstly how prices are set at the 
wider regional level of carbon trading, and secondly how these then feed into the investment 
economics of a particular, more localised, electricity system.  

Thus, we assume a set of possible generation technologies i ∈ {CCGT, coal, nuclear, biomass, OCGT, 
onshore wind, offshore wind, CCS gas, CCS coal, CCS biomass}.  Being a stylised model, not all 
generation technologies are included, nor are they necessary for the general insights sought. In 
particular, solar power was excluded, but the explicit effects of intermittent renewables in this model 
were represented by wind.   Key operating characteristics for these technologies include capital cost 
Γi, fixed operating and maintenance costs FOMi, non-energy variable operating costs VOMi, and heat 
rate HRi.  Capital costs are calculated as annuitized values, taking into account the overnight capex, 
the financial lifetime of the plant and a cost of capital discount rate ρcap. These parameters may vary 
over time.  We consider a 30 year time horizon, with 7 time steps y ∈  {0,5,10,15,20,25,30}.  Any 
plant built in year y is deemed to have the characteristics associated with vintage v.  For example 
capital costs Γi,v for later vintages will be lower than for earlier vintages if that technology is expected 
to benefit from (exogenous) learning effects. Fuel inputs are defined for four main fuel type f ∈ {gas, 
coal, nuclear, biomass}.  Each fuel type is assigned a price in each modelling period, which is an 
exogenously defined variable PFf,y., and has a carbon emission factor EFf per unit of fuel used. 
Demand for electricity is modelled as an inverse load duration curve, which specifies the number of 
hours for which demand exceeds a certain level. The curve is divided into 11 tranches, t ∈  {1,…11}; 
Dt is the total demand in each tranche, ht is the number of hours at which demand is at that level. For 
each vintage of technology in each year carbon emissions are calculated as: CO2i,v,y = EFf  HRi,v,y ∑t ht 
Ci,v,y,t. The key decision variables for the optimisation are the capacities of each technology i of each 
vintage v deployed in each year y and in each demand tranche t, denoted as Ci,v,,y,t. The total 
generation capacity in each tranche has to at least meet demand, ∑ 𝐶𝑖,𝑣,𝑦,𝑡𝑡 ≥ 𝐷𝑡 .  Since the 
availability of generation units are below 100%, the installed capacity is higher than expected peak 
demand creating an effective reserve margin in the model. This margin is about 5% but, as this long-
term least cost module is deterministic and nonstrategic, neither scarcity prices nor outages appear at 
this stage, and the main carbon price and generation mix outputs from this module are invariant to the 
operational reserve. This is in keeping with conventional modelling, whereby the reserve margin is 
often an exogenous consideration to least cost capacity expansion plans. The reserve margin 
sensitivity is, however, introduced into the linked risk and strategic modules as described below, 
where it has a substantial effect. 

Wind power is intermittent, so the deterministic optimisation cannot dispatch the level of deployment 
in each tranche separately.  Instead, we calculate, for any particular level of wind deployment, the 
‘residual load curve’. This is a widely used method and recent examples include Schill (2014), Lise 
(2013), and Steffen (2013).  We therefore subtract, from each demand tranche, the expected 
contribution of wind to that particular tranche. Statistically, wind is less likely to contribute to peak 
tranches than baseload or shoulder tranches and, in this model, it is assumed that expected 
contribution of wind to baseload is 33%, whilst its contribution during peak periods is 5%.  
Contributions to the intermediate tranches are scaled linearly and the relative contribution of wind to 
each demand tranche is assumed to be independent of the amount of wind added. An illustration of 
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the resulting impact of wind on the load duration curve is shown in Figure 2 for one particular 
realisation of the amount of wind in the system: 

Figure 2. Example impact of wind on the load duration curve 

 

Carbon capture and storage is modelled as a retrofit technology that can be applied to gas, coal or 
biomass baseload plants.  Capital costs are the marginal costs of the additional plant, marginal 
emissions are assumed to be negative (so that the combined base plant + CCS have a reduced total 
emission compared to the base plant on its own).   

To model the regional EU-ETS cap-and-trade scheme, the total carbon emissions from the system as a 
whole, CO2y in year y = ∑ 𝐶𝐶2𝑖,𝑣,𝑦𝑖,𝑣  , is constrained to meet a cap, CAPy, the level of which is 
assumed to be an exogenous variable, set by policy.  The price of carbon, PCy , in this case is an 
output from this module, and is calculated as the dual variable for the carbon constraint.  Banking of 
allowances between periods is enabled by allowing the model to choose emissions CO2y < CAPy, so 
that the difference is carried forward. This raises the cap, CAPy+1 , in the following year.  The 
optimisation will choose to do this if abatement costs are higher in future years.   Borrowing from 
future allowances is not allowed. At the EU level, the contribution of the other non-electricity sectors 
within the EU-ETS to meeting the target is based on a simple cost curve approach, taken from EU 
PRIMES model, and optimised to reduce the degree of emissions reductions required from the 
electricity sector without affecting the balance of the electricity supply and demand.   

The total LRMC of electricity generated by a particular technology i is therefore 

LRMC𝑖,𝑣,𝑦 =  �𝐶𝑖,𝑣,𝑦,𝑡
𝑡

 (𝛤𝑖,𝑣 + 𝐹𝐶𝐹𝑖,𝑣 + ℎ𝑡𝑆𝑆𝐹𝐶𝑖,𝑣,𝑦) 

where the SRMC, in the case of the EU-ETS, is the energy and other variable costs given by: 

SRMC𝑖,𝑣,𝑦 =  VOM𝑖,𝑣,𝑦 +  HR𝑖,𝑣,𝑦𝑃𝐹𝑓,𝑦 

Carbon prices calculated from the EU-level model are then passed through to the more detailed local 
GB market model.  The structure of the electricity investment optimisation is the same in principle, 
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except that the carbon price now feeds directly into the calculation of the plant operating costs. Thus, 
for the GB investment model 

SRMC𝑖,𝑣,𝑦 =  VOM𝑖,𝑣,𝑦 +  HR𝑖,𝑣,𝑦𝑃𝐹𝑓,𝑦 + HR𝑖,𝑣,𝑦𝐸𝐹𝑓𝑃𝐶𝑦 

The total system cost for a given year is simply the sum of all LRMC for all plant in the system, plus 
the cost of offsets and the optimisation objective is to minimise the discounted (at rate ρsys) sum of 
these over the entire 30 year horizon. The parameter estimates and sources are detailed in Appendix 1. 
With 2012 as the base year, the evolution of the power generation mix is considered under four 
carbon cap scenarios, as shown in Table 1. These carbon caps are the key exogenous input drivers, 
and the corresponding carbon price outputs from this module are shown in Figure 3. 

Table 1: Exogenous Carbon Abatement Policies 

Scenario Annual reduction in cap 
Tight cap 5.00% 
Central cap 3.50% 
Weak cap 1.74% 
Weak cap + 400 MtCO2 excess credits 1.74% 

 

Figure 3:  Carbon abatement scenarios at the EU level and resulting carbon price outputs  

.  

(A) Model inputs: EU emissions cap MtCO2        (B) Model outputs: carbon prices ($/tCO2) 

The ‘weak’ cap scenario has an annual reduction of 1.74% which corresponds to the rate of reduction 
specified in the EU-ETS Directive 2009/29/EC, although we apply it as a proportional decline rather 
than a linear trend.  The ‘central’ cap scenario annual reduction is approximately doubled to 3.5% 
which would be roughly in line with the EU’s more ambitious target of 30% reduction in GHG 
emissions by 2020, and continuing at this rate thereafter.  The ‘tight’ cap scenario considers a faster 
rate of 5% approximately in line with scenarios that have been suggested for example by the UK’s 
Climate Change Committee 4th Carbon Budget (CCC 2010).  

This module does not include any subsidies to support or preclude particular technologies (they are 
considered in later modules) but wind is forced into the system as a required fraction of generation, to 
represent the policy requirements under the EU’s targets for renewable energy in 2020.  After 2020, 
the model only introduces wind if it is cost-effective without subsidies.  This means that offshore 
wind starts to retire (whilst onshore wind remains cost-effective and stays in the system). This 
explains the reduction in wind capacity under the weaker cap scenarios, as displayed in Figure 4.  
Offshore wind only recovers its share of the generation mix in later years when the carbon price rises 
under the central and tight carbon caps.  
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Figure 4 Evolution of UK generation mix under four deepening carbon cap scenarios 

  
A) Weak cap + 400MtCO2 surplus credits B) Weak cap 
 

  
C) Central cap     D) Tight cap 
 

Being long term, optimal least cost plans, such results can only really be considered indicative in a 
centrally planned context, but nevertheless they are often the starting point for long-term policy and 
fundamental analysis. They leave open the questions of market price formation and the need for 
investors to earn an adequate return before committing to new capacity.  How these mark-ups could 
be achieved, whether through normal market pricing mechanisms or through additional subsidies, is 
taken into next the linked modules in the modelling framework.   

However, some observations can be made from the outputs of this initial module. Since all of the low-
carbon technologies benefit from carbon prices increasing steadily over the lifetime of the facilities, 
annuitized capital costs are only covered in later years. This has two implications. Firstly, with 
uncertainties in costs and revenues, as well as risk aversion, the benefits of delaying even NPV 
positive investments may be attractive. Furthermore, if the trajectory of carbon prices changes to 
become more convex, flatter in early years and steeper towards the end, induced perhaps by market 
participants making inefficient temporal arbitrage assumptions on the value of banking allowances, 
this would also increase the value of delay. A later section uses the optimisation model in stochastic 
mode to identify this potential value of delay using a real options approach. 

3.2. Module 2: Strategic Pricing Behaviour 
The optimal least cost modelling, as described above, provides a perspective on capacity investment 
for the EU and GB, taking account of endogenous carbon price formation under an EU-wide target, 
assuming competitive behaviour. This is the conventional way in which long term baseline pathways 
are developed. But the analysis does not address what the market prices would have to be for the 
investments to be attractive to market participants. In the absence of further subsidies, beyond the 
carbon price, mark-ups above SRMC may be required to achieve the required investment returns, and 
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the question of whether a liberalised market could achieve these is crucial.  If generators in a 
moderately concentrated market can achieve the required mark-ups, it suggests that relaxations of 
regulatory policy, as an alternative, or supplement, to market subsidies, may become part of the 
decarbonisation initiatives. This is not such a radical consideration, as SRMC will inevitably diverge 
from LRMC, as the market share of low marginal cost, high capital cost, renewable technologies 
increases.    

Figure 5 Companies manage availability in response to demand.

 

In order to set the context for considering market power in this context, we look at real historical 
behaviour in the GB market as a guide.  Even with a relatively unconcentrated market during 2005 to 
2008 (average HHI below 1000), the ability of the generators to manage capacity is most remarkably 
evident in the seasonal pattern shown in Figure , which shows daily average demand and supply over 
these 4 years. Evidently supply availability was well managed by the generators to maintain a 
constant capacity margin (the system operator contracts additionally for short term reserve margins), 
and thereby manage stable prices within and throughout those years (average summer and winter 
prices were similar despite the annual demand cycle). Further analysis reveals that this intra-yearly 
capacity management was mainly being carried out by the mid-merit coal plant. With decarbonisation 
seeking to replace all of this coal, it is evident that a greater intra-yearly role for seasonal capacity 
profiling will fall upon gas, followed ultimately by nuclear and renewables. Although the generation 
sector is well-used to coping with low utilisation factors, it is clearly much more tolerable for the 
larger players. Large players with strong balance sheets and portfolios of assets can temporarily or 
permanently withdraw capacity without creating the financial distress that a smaller IPP might face.  

Thus, the management of capacities and the potential for pricing above marginal cost are 
characteristic features of the generating sector and often provide substantial support to market clearing 
prices, without necessarily incurring regulatory or competition authority interventions. In our strategic 
modelling, therefore, we seek to identify what potential might exist in various market structures to 
facilitate high prices, the presumption being that market participants will assess the scope for mark-
ups above SRMC when considering investment analyses. It is an open question, of course, how much 
weight would be placed upon this ex ante, as the potential and sustainability of market conduct above 
competitive levels is quite speculative, being treated cautiously by lenders and final investment 
committees. 
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Furthermore, there is some empirical evidence on daily behaviour that market participants do not 
appear to achieve the high prices that theory would prescribe (Wolfram, 1999).  This is partly because 
theoretical solutions to power price gaming usually require highly stylized settings, but more 
importantly, the analyses are usually based upon single stage gaming, i.e. one-shot daily or hourly 
profit maximisation, rather than the repeated game that an oligopoly of generators may seek to 
maintain over the long term. It is also the case that several researchers have noted that co-ordination 
in practice is difficult and that real market participants are likely to sub-optimise (Crawford, 2007; 
Bunn and Day, 2009). Thus, the normative implications of prices from theoretical models of imperfect 
competition should be treated with caution and almost certainly diluted. Moreover, when market 
power is exerted in practice it often appears to follow price leadership so that focal points emerge, 
which may not reflect the fundamental equilibria, but rather manifest local co-ordination around 
mutually satisfactory outcomes.  Thus, econometric models of daily prices tend to show a mixture of 
fundamental variables such as demand, reserve margin and fuel prices together with lagged variables 
going back only one day (Karakatsani et al., 2008). More dramatic focal points driven by price 
leadership occasionally become manifest in apparently classic collusive ways, e.g. Wolak (2000) 
refers to the punishment strategy invoked by the market-leader, Statkraft, in Norway to sustain a high 
price level. All of which raises a difficult question on how and to what extent strategic behaviour and 
imperfect competition should be modelled and evaluated in prospective investment analyses. It would 
appear realistic to recognise the potential of market participants to achieve prices above the 
competitive levels, regulatory surveillance permitting, as this has been large part of the history of 
liberalised power markets around the world since 1990. Model-based analysis can illuminate this, but 
given the evidence, gaming models should be more reflective of the bounded rationality seen in 
practice and at best they should only be considered indicative of what may be possible. 

With this perspective in mind, computational learning is increasingly finding application as the most 
effective methodology to develop insights into price formation in complex markets, where there may 
be imperfect competition and where analytical results are elusive in all but the over-simplified 
stylisations. As such, electricity markets have been quite extensively analysed in this way, with a 
variety of learning algorithms (see Weidlich et al, 2008 for a review). In this research, we have 
followed a simple and transparent reinforcement algorithm first implemented by Bower et al (2001) to 
investigate the reform of the British power pool to bilateral trading in 2001. The stylized model is 
based upon the stack of plant capacities and their marginal costs, together with the 2012 demand 
distribution consistent with the specification of the optimisation and risk simulation models in the 
previous sections. In addition, an ownership specification is included, which we choose to specify in 
various stylized allocations of plant to generic owners, in order not to imply specific behaviour for 
any currently identifiable companies operating in the GB market. Market clearing is modelled the 
same way as in the risk simulations. The learning process is iterative based upon repeated offers to the 
same daily profile. The average daily profile for 2012 is presented repeatedly and the companies may 
thereby learn, through trial and error, to make offers above SRMC. The agents’ offering strategy is 
driven by a primary objective of reaching a minimum specified utilisation rate of their plant portfolio 
and a secondary objective of maintaining or increasing profit once the primary objective has been 
achieved. By following these objectives through a computational learning algorithm, the agents learn 
the profit-maximising policy, subject to utilisation, for offering capacity and prices for all their plants 
in the daily auction. 

The logic of the learning is to achieve the hurdle rates for utilisation and then maximise profit 
contribution at company level. Agents learn to do this by reinforcing successful strategies and 
reversing unsuccessful ones, together with some local searching. Thus, the meta-code is as follows: 
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Each agent has a minimum utilisation hurdle 𝑈𝑖  which it wants to exceed. 
Each unit j of agent i defines its offer price,𝑃𝑖𝑖 , as marginal cost, 𝐹𝐶𝑖𝑖, plus mark-up, 𝐹𝑈𝑖𝑖.  
For all ij at learning iteration k, we have 𝐹𝑈𝑖𝑖𝑖 and Profit Contribution 𝑃𝐶𝑖𝑖𝑖 
For all ij at learning iteration k, we record the previous change in offer prices at each plant 
𝐷𝑃𝑖𝑖𝑖 
For all agents we have total market portfolio Profits 𝑃𝐶𝑖𝑖, and Utilisation 𝑈𝑖𝑖.  
At iteration k,  
If 𝑈𝑖𝑖−1 > 𝑈𝑖, go to B; if not go to A;    
A: Reduce 𝐹𝑈𝑖𝑖𝑖 of all units individually by separate random e1 values subject to merit order 
conditions. 
B: if 𝑃𝐶𝑖𝑖 > 𝑃𝐶𝑖𝑖−1  , repeat 𝐷𝑃𝑖𝑖𝑖, if not, revert to the previous offer at 𝐹𝑈𝑖𝑖𝑖−1, in each 
case with the addition of a small random value, e2. 
[e1 is positive with a range (0,E1), e2 varies about zero with a range (-E2, E2)]              
Repeat to iteration 𝑘 + 1 
Record average market price (𝐴𝐴𝐹𝑃𝑖) for final half of the iterations.   
 

Merit order needs to be preserved, so random adjustments are constrained never to lead to offers that 
would reverse the basic marginal cost merit order of the units within each agent’s portfolio. This 
means that at any iteration, for all units in company j, offer prices, 𝑃𝑖𝑖𝑖, should be nondecreasing in i.  
While the desired rate of utilisation is defined exogenously, the profit objective is pursued 
endogenously: each generator is continuously learning to improve performance in the profit objective 
using the previous trading day’s profit as a benchmark to evaluate the current day’s performance. 
There are several reasons why companies will want to maintain a utilisation target. This could be part 
of their long-term market share strategy, or it could reflect prior contracting, or in some cases it could 
reflect availability obligations promised to the regulator. As will be seen later, assumptions about 
utilisation are critical to price formation, but if a low utilisation hurdle is selected, then it provides a 
basis for the company to substantially withdraw capacity, or indeed, if sustained, shrink in size. 

It should be re-emphasised that the outputs of such a strategic model should only be considered 
indicative of what might be possible. How real agents will chose to co-ordinate is highly speculative; 
sometimes less so than models of imperfect competition would suggest, sometimes more collusively. 
Furthermore, even in the simple setting of a symmetric duopoly, without demand elasticity, where 
offers are for a fixed amount of capacity, the often-cited work by Fabra et al (2006) informs us that 
there will be three equilibrium solution regions, one at the competitive level for low demand, one 
unbounded or at a cap for high demand and an intermediate region of indeterminate or mixed 
strategies. The intuition is that in the intermediate conditions, the incentive to undercut when one 
agent is moving the prices up creates the potential for cycling behaviour. In our more complex setting, 
the solution regions are not amenable such simple analysis, but we expect a similar perspective that 
pure equilibria may often not exist. As such, computational learning models can at best only be 
indicative of the potential for co-ordination. 

For the purposes of this analysis, the basic moderately concentrated scenario is a stylization of the GB 
market in 2012 with six large generators (“Big 6”) and a competitive fringe, which is assumed to 
comprise the excess capacity in the system, and which does not behave strategically. We assume the 
Big 6 are symmetric in terms of size and technology ownership. We then go on to consider 
consolidations of the Big 6 to produce Big 5, Big 4, Big 3 and Big 2 market structures in a similar 
symmetric way.  Later we relax the symmetries.  

There is substantial excess capacity in the model set-up from the outset, with 77.8GW installed 
capacity, of which13.5GW belongs to the competitive fringe, to meet a demand distribution for the 
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year which averages 39.5GW, with a maximum 54GW6. With this amount of excess capacity, if the 
competitive fringe seeks to be fully utilised, then the strategic players will be forced to withdraw 
substantial capacity in order to support prices, as they have done in GB since 2012, and as a 
consequence operate within our model at low average utilisation levels around 50%. 

Without excess capacity and a competitive fringe, strategic behaviour by a symmetric group of six or 
less generators would always lead to unbounded prices. For simplicity in the initial experiments, we 
assume that decarbonisation takes place through the activities of the big players, and that the 
competitive fringe stays constant. The competitive fringe consists of 50 facilities (denoted by 
“Others” in the figures below). We have two variations of reserve margin/competitive fringe; one with 
34% of the market and another with 15%. The types of technologies associated with the competitive 
fringe are offshore wind, onshore wind, OCGT, CCGT, and biomass, distributed across 20 owners. 
We start with exactly 77815 MW installed and initially take the case of 15% in to the competitive 
fringe. Average demand is about 40GW. So if the fringe always dispatches at 90%, ie almost 12GW, 
it leaves about 28GW on average of demand to be covered by the strategic players who own 64252 
MW. Thus, if the strategic players’ utilization targets are close to 50%, on average they will be 
competing with the competitive fringe and prices will be close to marginal cost. If they are willing to 
come down to 40% or below on average, then one of the players could become pivotal and prices may 
be unbounded. In theory, therefore, if they are all able to move capacity utilization down to the 
required level, very high prices can be maintained and all investment could be supported. 
Alternatively, if they all seek too high a level of utilization, prices will be driven to competitive levels. 
In between these extremes, co-ordinating and maintaining prices may be delicate as one player may 
be unwilling to take on the role of the residual price maker, even if it leads to higher profits, as that 
may involve accepting substantially lower utilization than the other symmetric large players.  
Furthermore, in practice with demand and supply fluctuating hourly, the convergence of offers will be 
even harder to learn than in this experimental setting where the same daily demand profile is 
repeatedly presented to the computational agents. 

In this study, we are seeking therefore to understand plausible multi-agent behavior in moving and 
maintaining offers above marginal cost to exercise market power, and so the initial trajectories of 
learning over 100-200 iterations are most revealing in terms of identifying the relative ease of co-
ordination, given that with very extensive learning on the same market situation, unbounded prices 
will always be possible in our experiments. We accept the evidence that market participants tend to 
adjust their offers in a cautious adaptive manner with bounded rationality, and we advanced the 
simple reinforcement learning algorithm with that in mind. Recall that the reinforcement behavior is 
simply one of repeating or reversing previous offers, plus a small random search, to maintain or 
improve profits subject to minimum utilization. Furthermore, in pursuing it, it is likely that the search 
for improved performance by market participants will be gradual. These conjectures are important, as 
tuning the search parameter in the algorithm is quite delicate, as indeed is setting a plausible lower 
bound for utilization levels7. The following indications from running this module as a standalone 
function set this context. 

If we allow substantial withdrawal by any of the strategic players, down to as low as 30%, and look at 
the initial state, with the six strategic players seeking to co-ordinate, Figure 6 shows that the agents 
steadily learn to increase prices, as indeed theory would suggest. 

                                                           
6 Demand was low in 2012 because of the post 2008 recession. Highest recorded GB demand was 60.1GW in December 
2002 
7 We have replicated the experiments reported here with more complex learning algorithms, with broadly similar results 
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Figure 6. Agents learn to increase prices 

 

Most revealing is to study how they do this by looking at their utilisations. We found that  after a 
period of large swings in utilisation, the market settles with two companies accepting the lower 
utilisation (around 35%)  role of being the price makers,  and the others having the higher load 
factors, closer to their maximum (80-90%, taking annual planned and unplanned availabilities into 
account). With symmetry, evidently the particular companies found and locked into such relative roles 
randomly. Once a company has settled into the role of being the marginal price-setter, then prices 
increase steadily. It does not follow however, that the more concentrated the market becomes, the 
easier it is to co-ordinate and increase prices more steeply. Recall the earlier reference to the 
symmetric duopoly theory (Fabra et al 2006), which suggests that if the agents are offering a fixed 
capacity, then there are three solution regions, marginal cost for low demand, unbounded at high 
demand and mixed strategies in between. In our setting, if we were to merge the six companies into 
two, we would be in a low demand setting if they tried to sell all (80-90%) of their capacity. Low 
prices would emerge from the repeated attractions of undercutting whenever one player raised prices. 
We found in this case that prices became locked into a cycle, as the company that has taken on the 
lower utilisation seeks repeatedly to undercut and increase market share. A similar process emerges if 
we have an asymmetric triopoly. The larger companies, as theory suggests, take the lower utilization 
roles, but even here, we see slow escalation of prices. We see a quicker price rise if we set a minimum 
30% utilization target from the outset. 

An important variant of this investigation was to explore asymmetry in the distribution of plant 
technologies across owners according to the allocations Table 2. In this Table, the six companies are 
labelled AAA, BBB, etc. We see slightly lower prices and a more difficult co-ordination process than 
in the symmetric in the Big 6 case. However, if we allow AAA to merge with BBB and CCC thereby 
concentrating all CCGT and Coal power plants into a single company, this focusses market power and 
leads to a more dramatic prices, as in Figure 7. Now, only in very few cases do utilization rates fall 
below 30% and, as a result, average daily prices reach £120/MWh within 100 iterations and seem set 
to escalate thereafter even more quickly. Thus, it is clear that mergers allied to technology niches is 
clearly a crucial aspect of achieving market power results more easily in a moderately concentrated 
market. 
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Table 2. Share of each plant type amongst the big 6 companies 

 

Figure 7. Pricing behaviour when CCGT and coal plant are owned by a single company 

           

 

3.3. Module 3: Short-run Market Price Risk  
The third key element we need to introduce into considerations of investability in the power sector is 
the short-run (intra-year) price risk. We take the view that investors will acknowledge long-term least- 
cost modelling for providing a view of where market fundamentals are driving the industry, the way 
in which policy makers will think about interventions, and therefore how the long-run structure of the 
industry is likely to evolve in terms of generation mix. Investors may, however, be quite cautious 
about the sustainability of market power. Typically, when it comes to the final investment decision 
point for an individual project, lenders and investment committees examine a detailed financial model 
that makes explicit analysis of risk, and in particular, if it is viewed as a project, the risk that the 
annual net operational earnings will cover the financing costs (i.e. the “coverage ratio”, as in CPI, 
2011; Moody’s, 2009). 

In order to focus precisely upon the annual financial performance risks of assets, therefore, 
particularly with respect to coverage ratios under progressive decarbonisation, the risk analyses 
developed here are formulated as a series of detailed, specific year analyses of the output from the 
optimisation and strategic modules. This allows for a probabilistic simulation of operational and price 
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risks within a particular year, based upon empirical data, so that annual operational profit probability 
distributions can be compared with annuitized financing costs. The long-term specifications result 
from least cost optimisation module. Essentially these longer term parameters set the mean values for 
each year, which may have price mark-ups determined by the strategic simulations, and the target year 
risk simulations analysed here are calibrated to intra-year variations around such means. The annual 
risk model is much more detailed in its modelling of stochastic supply and demand effects than in the 
longer term investment scenarios of module1. 

Wind speed is now represented in this module using Weibull probability distribution functions, and 
this is converted to power according to a typical wind-power nonlinear transfer function, following 
Zonneveld et al (2008),  Kusiak (2008) and Hossain et al (2011), leading to an average annual 
production of around 30% of installed capacity. The portfolio averaging of extensive wind farm 
penetration is modelled by considering two regions in GB, north and south. From studies on wind 
speeds in geographic locations (Sinden, 2007) an output correlation index of 0.7 is taken for plants in 
the same geographic areas within the north or south, and an index of 0.1 is used between the north and 
south plants. New offshore wind generation is assumed to be distributed evenly between north and 
south. The model is formulated as a ‘stylised’ scenario-based model in which market structure follows 
the outputs of the long-term optimisation model and the agent behaviour may be competitive (at 
marginal cost) or strategic with mark-ups determined by the computational learning of module 2.  

In the stylised GB model no allowances were made for start-up costs, but the market price 
uncertainties in EU carbon allowances are included, having been estimated empirically around yearly 
means over previous years. Transmission constraints do not factor into wholesale market prices, as 
they are part of the real-time system balancing activities. We have negative marginal costs for wind 
implied by the renewable subsidies (ROCs). This means that these generators would, if necessary, be 
willing to pay up to the value of their subsidy in order to produce; hence the negative wholesale prices 
that sometimes appear (especially in Germany and Denmark where wind penetration was much higher 
than GB in 2011). Parametric values are sampled statistically as Monte Carlo simulations. A winter 
and summer demand are sampled repeatedly to form seasonal hourly demand distributions, based 
upon the actual 2012 hourly data. This seasonal split is designed to interact with typical seasonal 
availabilities for the generating facilities. No demand elasticity is assumed. Unplanned outages are 
simulated according to binomial distributions based upon average availabilities. 

Fossil-fuel prices are sampled from log-normal distributions with intra-yearly standard deviations and 
correlations estimated empirically over recent years as follows:   

Correlations Oil Gas Coal 

Oil  1   

Gas  0.631 1  

Coal  0.861 0.628 1 

The module simulates hourly market prices and utilisations for each plant, thereby returning statistical 
distribution for annual profit contribution for each plant in the system. These can also be aggregated 
by company ownership. New investment performance is monitored in terms of annual profit 
contributions, debt coverage ratios and the probability that the debt coverage ratio falls below 1.2. The 
debt coverage ratio is an annual value representing the ratio of annual operational profit contribution 
to annuitized capital costs, where the annuitisation depends upon a cost of capital and asset lifetime. A 
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ratio above 1 means that the asset is making a positive return, and that would be comparable to an 
NPV criterion. Following the risk simulation analysis, we have a probability distribution for this ratio 
and a critical value exceeding 1.2 with 95% confidence is taken as an indicative criterion that may be 
considered by analysts and ratings agencies to retain an investment grade (CPI, 2011). Although, as a 
baseline, 100% debt financing of new assets was assumed, it is recognised that typically, onshore 
wind assets have been 80% debt financed in GB, offshore rather less, and CCGT/coal/nuclear 
generally being on-balance sheet. However, for some rather fundamental comparative insights, these 
baseline assumptions were taken to provide a reasonable and conservative proxy for the range of 
financial performance metrics that may be used in practice (since for leverage below 100%, higher 
equity returns than debt will generally be required). For this reason we refer to this ratio more 
generally as capital coverage in what follows. In any particular case, a company’s idiosyncratic tax, 
leverage, amortisation and corporate circumstances will, of course, be quite distinctive. 

 4.  Integrated Results  
We report first the output from the stylised version of the investment risk simulation module 3, linked 
to the output from module 1 but without the strategic behaviour being activated through module 2. 
This is therefore a competitive market baseline. Risks are simulated, as above, for each of the 5-year 
modelling periods according to the outputs from the long-term optimisation model. Table 3 shows the 
5th percentile values for the distribution of capital coverage ratios for each of the main technology 
types covered in the model8. The scenario represented here is the central carbon cap, and assumes a 
high nuclear cost scenario.  No further subsidies are assumed for low-carbon plant in this scenario.  In 
order to meet the capital coverage threshold, the 5th percentile should be above 1.2.  In the early years 
until year 15, for this scenario, the results of risk simulation indicate that none of the technologies 
would meet the criterion of debt coverage exceeding 1.2 with 95% probability. By year 15, and 
thereafter, with the higher carbon prices coming through, nuclear and onshore wind meet the criterion, 
but that is all. In fact, similar results have been produced, but not reported here, for all the other 
carbon cap scenarios that do not include any low carbon subsidies. 

Table 3.  5th Percentile value of capital coverage ratios 

 

In other words, the risk neutral view of least cost planning in the aggregate would be confronted by 
risk-averse financial planning considerations at the level of the firm. The consequences of this are 
various.  There could be a capacity-building hiatus, until scarcity induced higher prices, or it is 
possible that prices could be raised by firms with sufficient market power, or there could be further 
subsidies. We will revert to a discussion of these remedies later. Figure 8 shows the significant level 
of mark-up above system short-run marginal cost that would be required in order to raise up these 

                                                           
8 WOF: wind offshore, WON: wind onshore, NUC: nuclear, CCS: coal with carbon capture and storage, CCGT: combined-
cycle gas turbine, COAL: coal, OCGT: open-cycle gas turbine. 

        WOF         WON    NUC     CCS CCGT COAL OCGT

Year 0 0.29 0.60 0.63 0.01 0.41 0.03 0.00

Year 5 0.40 0.83 1.06 0.06 0.47 0.03 0.00

Year 10 0.44 0.90 1.16 0.18 0.25 0.01 0.00

Year 15 0.60 1.24 1.68 0.39 0.23 0.01 0.00

Year 20 0.64 1.31 1.78 0.64 0.02 0.00 0.00

Year 25 0.95 1.95 2.70 0.97 0.08 0.00 0.00

Year 30 0.89 1.87 2.53 0.94 0.01 0.00 0.00
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coverage ratios so that they exceed a factor of 1.2 with 95% probability.  Evidently, to be able to 
mark-up revenue in this way requires that the whole supply function is lifted uniformly by the mark-
up, which, in the absence of subsidies, requires co-ordination amongst all owners of all technologies.  

Figure 8.  Price mark-up above system marginal cost required to reach 95% probability of 
capital coverage ratio >1.2 for various technologies under the central carbon cap scenario. 

   

The short-run risks for gas and coal plant increase quite substantially in the intermediate years.  Under 
the central scenario, the coal plant becomes steadily less attractive anyway because of rising carbon 
prices.  For gas plant, the risk arises due to the potential future addition of newer gas plant to the 
system with an expected improvement in efficiency which would push the current vintage gas plant 
further down the merit order and increases the risk that it may not get deployed.  This indicates that 
investors in fossil-fired plant either need to plan on recouping their investment in the initial 10 to 15 
year period, or perhaps consider other ways of assessing their willingness to accept short-run risk.   

It was evident from the initial simulations of the strategic module, in section 3.2 above, that mark-ups 
in this stylised setting can be substantial and will depend upon the reserve margin, the degree of 
concentration and the diversity of technology ownership. All of these dimensions of market structure 
can be expected to be co-evolutionary, if allowed, as the industry re-organises itself to meet the 
required profits. The insights from the strategic simulations in section 3.2 suggest that even the 
moderately high mark-ups required in Figure 8 for the low carbon technologies over the medium and 
longer terms are within reach for a concentrated industry. Additional complexity in the market power 
effects also comes from its uneven dynamic properties. For example, if we compare the relatively 
unconcentrated and over-supplied market structure of the basic six symmetric companies and a 34% 
competitive fringe, acting strategically and competitively, and evolving over time in response to the 
changes in generation mix consistent with the outputs of the long-run optimisation module 1, with the 
central carbon-cap, high nuclear-cost reference scenario, we see an uneven emergence of market in 
Figure  9. 

Figure 9. Electricity price evolution with 34% competitive fringe 
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The strategic prices are those which emerged after 100 learning iterations. Evidently these are not 
equilibrium prices but for the reasons mentioned previously, we feel it is more constructive to look at 
the relative speed of learning to consolidate, as a way of differentiating the strategic potential in the 
various scenarios. As for the Year 0 analysis reported in 3.2, we again look at the sensitivity to   
different scenarios for the size of the reserve margin and competitive fringe of 15% and 34%.  In both 
cases, the ability for companies to manage prices upwards is very evident, but with 15%, the pattern 
was similar, but with higher prices. The evolution of market power is evidently, therefore,  non-
monotonic over time.  Market power increases to a local peak after ten years, as the Big 6 retain 
price–setting with gas plant, and are able to increase inframarginal profits though the replacement of 
some of coal facilities with the lower marginal cost wind eroding prices. They are therefore able to 
operate their fossil price-setting plant more aggressively. With further decarbonisation, however, they 
lose this price-setting benefit, the competitive fringe is more influential, and mark-ups decline. 
Finally, after 30 years, market power returns as some CCS facilities, together with high gas and 
carbon prices increase the price setting capabilities at the margin. The subtle interaction of the profile 
of technological change and market concentration is therefore revealed. Furthermore, policy affects 
this non-monotonicity as well. With a tighter carbon cap, prices are higher in earlier years as shown in 
Figure 10, with a remarkable change in the profile of market power evolution. It seems that the 
increased pace of decarbonisation opens up the market power potential sooner.  

Figure 10. Electricity price evolution with a tight carbon cap   

 
 

Overall, as these mark-ups are substantial and compare to the risk premia identified previously, these 
results suggest that once the companies have determined their lowest mutually acceptable utilization 
levels, co-ordination to increase prices is possible, leading to adequate investment support, even with 
six similar companies operating. This will presumably be easier the less excess capacity is in the 
system, and the process of withdrawing excess capacity is easier, the more concentrated the market. 
Thus, market consolidation may be a precursor to effective strategic pricing support for decarbonizing 
investment, in the absence of substantial subsidies. Furthermore, consolidation and technology 
specialization may offer greater potential for price movers, which may imply that market power will 
emerge unevenly as decarbonisation trajectories evolve. 

As a consequence of these insights, the ability to achieve adequate investment returns in an energy 
only market through strategic behaviour is evidently idiosyncratic to the specific market under 
consideration, its level of concentration, capacity mix, reserve and the ability of market participants to 
learn collusive outcomes. To give a final focus to this we therefore look at a more specific example, 
with the GB market under its ownership structure in 2012 (ie not stylized into the AAA, BBB, etc, 
companies as above) and consider how investability in this market in 2012 would vary if wind 
progressively replaced more of the 26GW of coal in the system at that time. This is not a forward 

0
50

100
150
200
250

Ye
ar

 0

Ye
ar

 5

Ye
ar

 1
0

Ye
ar

 1
5

Ye
ar

 2
0

Ye
ar

 2
5

Ye
ar

 3
0Av

er
ag

e 
Da

ily
 

Pr
ic

es
 

Strategic Prices

Competitive Prices



19 
 

looking scenario, but a sensitivity analysis of 2012, with all of the 2012 parameters, if it had different 
replacement levels of coal by wind. The coverage ratios that would result for wind, nuclear and gas, 
under competitive offers and with strategic learning (100 iterations) are shown in Figure 

Table 4: Investment Coverage Ratios in the 2012 GB market if wind replaced coal 

 

Each cell gives the average coverage ratio, and we notice that it declines with more decarbonisation. 
The shaded cells are where the P95 criterion of being greater than 1.2 is not met. Evidently, when 21 
of the 26GW of coal are replaced with wind, none of the technologies would meet the coverage ratio 
criterion without further help, or a tighter reserve margin, or greater market concentration. On the 
other hand, strategic behaviour would support all investments in the base case, and offshore wind up 
to 14 GW replacement. The circumflexes in the base case cells indicate that the prices were rising 
rapidly even before 100 iterations and the investment criterion would have been met comfortably and 
restrained only by a price cap. 

5. Risk and Delay 
Finally we consider possibility that in response to not meeting the risk criteria and without the ability 
to rely upon the exercise of market power (eg for regulatory concerns), investors may choose to delay 
and create an investment hiatus. Evidently, this will cause prices to rise, depending upon demand 
growth and plant retirements, but it will also affect the trajectory of carbon prices. We therefore feed 
this consideration back into module 1 to see what it would do to carbon prices. Figure 11 displays 
this. Evidently, carbon emissions rise during the period of the investment hiatus because of the greater 
reliance on existing fossil plant, some of which is old and less efficient.  The higher emissions lead to 
higher carbon prices in the short and medium periods of the modelling horizon.  This arises because 
more carbon allowances are required in the early period to cover the greater use of fossil fuel plant, so 
fewer allowances are available to bank through to later periods. Furthermore, higher carbon prices in 
turn would improve the investment case for new plant because they raise the expected electricity 
price. 

 

 

GW Coal Replaced Base Case 7 14 21

Wind Offshore 
Competitive

1.3 1.3 1.3 1.2

Wind Offshore 
Strategic

^ 1.75 1.7 1.3

Nuclear Competitive 0.9 0.8 0.7 0.6

Nuclear Strategic ^ 1.8 1.6 0.8

CCGT Competitive 0.7 0.4 0.3 0

CCGT  Strategic ^ 3.6 1.2 0
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Figure 11. Impact of investment hiatus on carbon price trajectory (average of all cap scenarios) 

 
 

When companies are faced with the choice of making an irreversible investment in a project with 
uncertain future returns, there can be a real options value in waiting if this allows the company to 
avoid some downside risk.  However, the cost of waiting will eventually outweigh the value of 
waiting, and rational investors would choose to proceed at that point. To evaluate this real option, we 
use an approximation to dynamic programming (as in Dixit, 1994), whereby the optimisation model is 
run N times, with different realisations of the main stochastic variables for each run.  The average 
NPV across all N runs is evaluated for each time period t, and the value of waiting is calculated, 
assuming that the evolution of the overall market is unaffected by this decision to delay.  We evaluate 
average mark-ups above SRMC in order for investing immediately to be a better opportunity than the 
option of waiting until Year 5.  The mark-ups depend on the stochastic parameters (see Appendix 1) 
which are mainly based upon the DECC 2050 pathways calculator, DECC (2011) and Parsons 
Brinkerhoff (2012).  

As a result, Figure 12 reports the mark-ups required to bridge different investment hurdles following 
the feedback effects of delayed investment.  The charts show the ‘Breakeven’ mark-ups required to 
achieve a positive NPV, based on the expected value across all the stochastic scenarios evaluated at 
7% discount rate as well as the mark-ups required to bring capital coverage ratio (CCR) above either 
1.0 or 1.2 in 95% of outcomes.  The CCR>1.0 is shown for sensitivity, and might be appropriate for 
larger companies able to accommodate short-run risks. The Long-run mark-up (LR) evaluates a 
premium based upon the dispersion of annual average values over time (as produced by module 1) 
whereas the LR+SR premium considers both this long run and the short run premia to meet the 
additional intra years risks, as evaluated through module 3. Evidently, in focussing upon the mark-ups 
required, we are again suspending the strategic learning in module 2, but we observe that these mark-
ups are within reach of the strategic behaviour as evidenced in the previous simulations  

On the horizontal time axis, a distinction is made for the case of investing in year 5 or 10 where the 
market evolves according to the optimal plan and the ‘delay’ case in which no new plant is built by 
any players in the early periods.  In the delay scenarios (5-year or 10-year), the retirement profile for 
existing fossil-fired power plants is relaxed so that there is sufficient existing plant on the system to 
meet demand over the full 10 year period until a new plant is built. Compared to no delays, the 
improvement in expected returns resulting from the investment hiatus is noticeable for the low-carbon 
generation sources, but it takes ten years to show up. It is important to recognise that in this analysis, 
it is not due to prices rising because of scarcity; we maintain the same level of security by retaining 
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facilities that otherwise would be retired. Rather it is the endogenous effect of carbon prices rising and 
thereby reducing the risk premia required to initiate investment. Total emissions are higher in the 
short term, but lower in the longer term since the optimal investment trajectory is still required to 
meet the same final cap. Overall, the endogenous nature of carbon and electricity markets appears to 
be somewhat self-correcting.  However, we see that for wind and CCS, even after ten years, with the 
hiatus-induced higher carbon prices, further financial support, or the market power to achieve prices 
above SRMC would be required. 

Figure 12.  Evolution of investment conditions over time and under an investment hiatus 

  

  

  

  

-50%

0%

50%

100%

150%

200%

Yr 0 Yr5 Yr5 delay Yr10 Yr10 delay

M
ar

k-
up

Gas+CCS
LR+SR premium CCR>1.2 LR+SR premium CCR>1

LR risk premium Breakeven NPV=0

-50%

0%

50%

100%

150%

200%

Yr 0 Yr5 Yr5 delay Yr10 Yr10 delay

M
ar

k-
up

Coal
LR+SR premium CCR>1.2 LR+SR premium CCR>1

LR risk premium Breakeven NPV=0

-50%

0%

50%

100%

150%

200%

Yr 0 Yr5 Yr5 delay Yr10 Yr10 delay

M
ar

k-
up

Coal+CCS
LR+SR premium CCR>1.2 LR+SR premium CCR>1

LR risk premium Breakeven NPV=0

-50%

0%

50%

100%

150%

200%

Yr 0 Yr5 Yr5 delay Yr10 Yr10 delay

M
ar

k-
up

Nuclear
LR+SR premium CCR>1.2 LR+SR premium CCR>1

LR risk premium Breakeven NPV=0

-50%

0%

50%

100%

150%

200%

Yr 0 Yr5 Yr5 delay Yr10 Yr10 delay

M
ar

k-
up

Biomass+CCS LR risk premium Breakeven NPV=0

-50%

0%

50%

100%

150%

200%

Yr 0 Yr5 Yr5 delay Yr10 Yr10 delay

M
ar

k-
up

Onshore Wind
LR+SR premium CCR>1.2 LR+SR premium CCR>1

LR risk premium Breakeven NPV=0

-50%

0%

50%

100%

150%

200%

Yr 0 Yr5 Yr5 delay Yr10 Yr10 delay

M
ar

k-
up

Offshore Wind
LR+SR premium CCR>1.2 LR+SR premium CCR>1

LR risk premium Breakeven NPV=0

-50% 
0% 

50% 
100% 
150% 
200% 

Yr 0 Yr5 Yr5 delay Yr10 Yr10 delay 

Mark 
- up 

CCGT LR+SR premium CCR>1.2 LR+SR premium CCR>1 
LR risk premium Breakeven NPV=0 



22 
 

6. Discussion and Conclusions  
In seeking to understand in a systematic way how decarbonisation through a cap and trade process can 
continue to support investment in the electricity sector, we have developed a dynamic, pragmatic 
analysis.  Many analysts have suggested that conventional market designs are no longer appropriate to 
deal with the decarbonising structural changes.  It is widely suggested that capital intensive 
technologies and the increasingly dynamic requirements on low load factor plants to cope with 
intermittent renewables will not be sufficiently rewarded by energy-only markets.   But studies of 
alternative market designs and/or policy interventions are often (a) static in the sense that price 
formation for a future target year under a different pricing regime is simulated, (b) based upon 
assuming a perfectly competitive market, (c) that market participants are risk neutral, (d) that 
investment will occur if the NPVs are positive and (e) that carbon prices will follow an exogenous 
path to meet long-term targets. We have relaxed all of these assumptions and looked at (a) the 
evolving price formations and investment signals over time to explore how the attractiveness of 
investments change with progressive decarbonisation; (b) modelled investors who are risk averse, 
looking carefully at the risk of financial underperformance year-by-year before investing as well as 
the value of delaying investments as carbon and other uncertainties evolve; (c) considered imperfect 
markets where consolidation by large players can provide returns above the competitive level and 
thereby support investments which would otherwise be unattractive, and (d) modelled the carbon 
price formations as an endogenous process as it is both a driver of investment in the power sector and 
is in turn influenced by the sector’s emissions. Thus, we have been able to develop a richer set of 
inter-related, dynamic insights into the trajectories of power prices and investment, as well as carbon 
prices over the long-term. Nevertheless, the system is complex and our insights are only indicative, 
resulting necessarily from highly stylised modelling. 

Methodologically, we have focussed upon a model-based analysis involving the interaction of three 
distinct approaches: a bi-level long-term investment optimisation model to compute endogenous 
carbon prices set by targets extending over several power markets and the impact of these on 
investment trajectories in a selected sub-region; a model of strategic price formation for target years to 
understand the potential for prices to emerge above the competitive levels through exercise of market 
power, and a detailed risk simulation model to provide a realistic assessment of the propensity of 
investors to go ahead with projects based upon considerations of the risk of financial 
underperformance, as a more stringent criterion than simply a positive NPV. We recognised that the 
current state of power sector modelling often deals with these important elements in rather disjoint 
ways, and it is an open research question how and to what extent a more coherent synthesis could be 
achieved. It is generally the case in practice that long-term investment models are based upon least 
cost technology choices and timing, assuming competitive marginal cost prices, yet short and medium 
term models of price projection often apply estimates of mark-ups above marginal costs to reflect 
what has been observed in the power market and what may be expected to persist. Furthermore, risk is 
sometimes included by applying a higher discount rate in the investment calculations, rather than 
explicitly in the way that investors may evaluate it.   

But, there are major research challenges in seeking to develop an integrated approach. One is 
computational – it is infeasible to incorporate all of the strategic gaming, ownership, plant and system 
details as well as risk considerations differentiated by company that might be involved in a yearly 
price-formation analysis into a long-term model with endogenous investment, market structure 
evolution and carbon price formation. The other is methodological in that strategic modelling is only 
indicative of a range of possibilities, both with respect to the exercise of market power in price 
formation, and in the propensity to invest, so that any attempt to embed these features as sub modules 
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in a larger systematic representation of market evolution would require behavioural speculation on a 
number of heuristics. The same applies to feedbacks in policy interventions over time. Nevertheless, 
despite the limitations, we have sought to position this research firmly in this space, in terms of 
seeking a more coherent analysis of the way that longer-term fundamental views will be modified by 
short-term risk considerations, the emergence of risk premia and the possibilities to exercise market 
power. The approach we have taken is one of transparent linking, as the macro long view of the 
industry parameters informs the micro short term risk averse decision-making.  

Turning to the major insights, a fundamental observation is that, in a market for a product which is an 
essential service, with no price elasticity, if we allow companies to merge and withdraw capacity, and 
if there are no regulatory constraints, then the market participants can always achieve adequate market 
prices. In the same way, governments can ultimately offer sufficient subsidies to make all new 
investments happen. Since both extreme positions are expensive, the awkward pragmatic questions in 
practice are related to motivating the dynamics of new investment in a balanced, timely and efficient 
manner, with an understanding of how the sensitivity of the process to policy interventions and 
market conduct emerges. 

We have observed the following indications: 

• With the introduction of intermittent renewables in the form of wind, and perhaps solar, the 
market fundamentally becomes progressively higher risk, lower return.  This may mean an 
on-going requirement for subsidy support even as capital costs come down through 
technology learning. 

• If the market is becoming more risky, industry may re-organise and larger companies will 
manage it better. However, in a market with excess capacity, it is not as easy to co-ordinate as 
might be expected, even under high degrees of concentration.  The way in which technology 
is owned and distributed amongst the companies has an important effect on the ability to 
exercise market power and raise prices easily. Companies may seek to become concentrated 
niche players, which is a counter-intuitive result to the conventional diversification view of 
risk management through owning a little of everything. 

• Top down aggregate planning through large-scale, long-term least cost planning can be 
significantly affected by firm-level considerations of operational risk. Behavioural 
considerations indicate quite different investment trajectories and the influence of 
intervention policies. Understanding the need for companies to manage risk and the effective 
introduction of de-risking interventions appears necessary from Governments if they are to 
achieve the decarbonisation targets which such plans set. 

• Adopting a liberalised market with energy-only pricing, no special subsidies and only a 
carbon market to achieve the goal of decarbonisation is likely to be faced with under-
investment in the early years, higher prices in the later years, but may still deliver the ultimate 
carbon reduction targets if market participants believe in the mechanism. Policy makers may 
be intolerant of the lower attainment of early progress, however. 

The size and structure of companies is likely to have a considerable bearing on the ability of the 
market to deliver investment, with much of the analysis in this paper indicating greater market 
consolidation. Whilst such a response might be seen as a legitimate ‘market-led’ solution, and indeed 
the industry has been allowed to support prices through market consolidation in many situations 
worldwide,  to the extent that the process explicitly condones market concentration and the recovery 
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of long-run  capital costs through the exercise of market power, it runs counter to wider liberalisation 
objectives of achieving a diverse and competitive market with more widely dispersed ownership of 
assets and an attractive  climate for smaller new  entrants. It would raise challenges for competition 
and regulatory policy, and would make politicians and companies fearful that public-private 
partnerships in achieving both policy goals and investor returns could easily become discredited.  

Our overall conclusion points towards a possible mixture of policy interventions by Governments and 
market consolidation by the market participants.  If this occurs, it presents an awkward control 
problem for policy-makers and regulators at several levels. Understanding the inter-relationships and 
timing impacts of different interventions will require sophisticated analysis, whilst tolerating 
substantial, but mitigating extreme, market power in the context of industry subsidies will be delicate. 
In this context, there are some crucial modelling lessons from this work.  Large-scale, long term least-
cost capacity planning models have an important role to play in informing policy and are likely to be 
the baseline for investor views over the lifetime of prospective assets. But detailed consideration of 
how individual investment decisions will be made with risk averse considerations needs to overlay 
these insights to fully understand the propensity of investors to delay, or to require higher premia in 
order to act sooner. These effects on the model-based indications appear to be substantial, and can be 
developed to an extent in a transparent way through extra considerations of real options and risk 
analysis, as well as related strategic modelling. However, strategic insights are only indicative of what 
might be possible, being essentially reliant upon behavioural assumptions, and as such are, at best, 
only a cautious basis for informing policy. 
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Appendix 1   Data Assumptions for Optimisation Model 
 

Figure A1.1   Supply of allowances from outside of the power sector (energy efficiency + CDM ) 

 

Table A1.1  Capital cost assumptions (overnight costs $/kW) 

  $/kW Notes 
 Life(yrs) Central Low High  
CCGT 20 1085 919 1252 DECC 2050 calculator 

OCGT 25 690 584 795 
Central from DECC 2050 calculator, high and 
low scale according to CCGT range 

Coal 30 2658 2381 2934 DECC 2050 calculator 

Nuclear 20 4284 3648 7000 
Low and central from DECC 2050.  High nuc 
costs from recent press estimates.  

Biomass 25 3520 3154 3886 
Central from DECC 2050 calculator, high and 
low scale according to coal range 

Coal +CCS 25 1794 1463 2124 
Central from Mott MacDonald as in DECC 
2050.  High and low scaled from DECC range. 

Gas+CCS 20 818 670 965 
Central from Mott MacDonald as in DECC 
2050.  High and low scaled from DECC range. 

Biomass+CCS 20 1794 1463 2124 Biomass CCS costs based on coal CCS 
Onshore wind 20 2157 2000 2313 DECC 2050 calculator 
Offshore wind 20 4448 3885 5010 DECC 2050 calculator 

 

Table A1.2  Load factor assumptions for wind 

Load Factor Central Low High Source 
Onshore Wind 28% 25% 31% Mott MacDonald 2010 
Offshore Wind (high range) 45% 41% 45% Mott MacDonald 2010 
Offshore Wind (low range) 38% 38% 41% Mott MacDonald 2010 
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Table A1.3  Fuel price assumptions 

 

Price in 
Year 0 
($/MWh) 

Annual 
Escalation 
factor 

Std dev. in 
escalation 
factor 

Notes 

gas  26.7 2.3% 1.3% 
 

DECC fuel price scenario. High and low scenarios assumed 
to be 1.5 standard deviations from central, providing the 
range in escalation factors.  coal 14.8  0.8% 1.1% 

 

nuclear  1.8  2.3% 1.1% 
 

Year 0 value from DECC 2050 calculator.  Variation scaled 
to range for gas 

biomass 40.3 0.0% 2.0% 
 

Year 0 and annual escalation from CCC special report on 
biomass.  Future price range assumed 1.5 times greater than 
for natural gas. 

 

Table A1.4  Operating costs and efficiencies for existing plant 

 
Heat rate  Variable O&M Fixed O&M Availability 

   
$/MWh 

 
$/kW 

   

Fuel 

Value 
when 
new 

Deterioration 
per age year 
(%) 

Value 
when 
new 

Deterioration 
per age year 
(%) 

Value 
when 
new 

Deterioration 
per age year 
(%) 

Value 
when 
new 

Deterioration 
per age year 
(%) 

CCGT 1.83 0.14 0 0.14 35.68 0.14 0.9 0.14 
Coal 2.45 0.08 0 0.08 87.2 0.08 0.9 0.08 
Nuc 1.05 0.08 5.3 0.08 115.7 0.08 0.9 0.08 
OCGT 3.85 0.14 0 0.14 35.68 0.14 0.9 0.14 
Hydro 1 0 0 0 95.33 0 0.15 0 

 

Table A1.5  Operating costs and efficiencies for new plant 

 
Heat rate   

Variable 
O&M 

$/MWh 

Fixed 
O&M 
$/kW  

 

Yr0 value Deterioration per 
age year (%) 

Yr0 
value 

Yr0 
value 

Deterioration per 
age year (%) 

gas 1.73 0.14% 0 35.7 0.14% 
coal 2.38 0.08% 0 87.2 0.08% 
nuc 1.05 0.08% 5.3 115.7 0.08% 
gas 3.85 0.14% 0 35.7 0.14% 
biomass 2.78 0.08% 0 87.2 0.08% 

coal +CCS 
20% energy 

penalty 0.08% 15.0 126.4 0.08% 

gas + CCS 
15% energy 

penalty 0.14% 10.1 60.8 0.14% 

biomass 
20% energy 

penalty 0.14% 15.0 126.4 0.14% 
Wind On - - 0 125.9 0.14% 
Wind Off - - 0 234.9 0.14% 
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