26 research outputs found
A negative feedback loop mediated by the Bcl6-cullin 3 complex limits Tfh cell differentiation
Induction of Bcl6 (B cell lymphoma 6) is essential for T follicular helper (Tfh) cell differentiation of antigen-stimulated CD4(+) T cells. Intriguingly, we found that Bcl6 was also highly and transiently expressed during the CD4(+)CD8(+) (double positive [DP]) stage of T cell development, in association with the E3 ligase cullin 3 (Cul3), a novel binding partner of Bcl6 which ubiquitinates histone proteins. DP stage-specific deletion of the E3 ligase Cul3, or of Bcl6, induced the derepression of the Bcl6 target genes Batf (basic leucine zipper transcription factor, ATF-like) and Bcl6, in part through epigenetic modifications of CD4(+) single-positive thymocytes. Although they maintained an apparently normal phenotype after emigration, they expressed increased amounts of Batf and Bcl6 at basal state and produced explosive and prolonged Tfh responses upon subsequent antigen encounter. Ablation of Cul3 in mature CD4(+) splenocytes also resulted in dramatically exaggerated Tfh responses. Thus, although previous studies have emphasized the essential role of Bcl6 in inducing Tfh responses, our findings reveal that Bcl6-Cul3 complexes also provide essential negative feedback regulation during both thymocyte development and T cell activation to restrain excessive Tfh responses
Physicochemical characterization and genotoxicity of the broad class of carbon nanotubes and nanofibers used or produced in US facilities
Background Carbon nanotubes and nanofibers (CNT/F) have known toxicity but simultaneous comparative studies of the broad material class, especially those with a larger diameter, with computational analyses linking toxicity to their fundamental material characteristics was lacking. It was unclear if all CNT/F confer similar toxicity, in particular, genotoxicity. Nine CNT/F (MW #1-7 and CNF #1-2), commonly found in exposure assessment studies of U.S. facilities, were evaluated with reported diameters ranging from 6 to 150 nm. All materials were extensively characterized to include distributions of physical dimensions and prevalence of bundled agglomerates. Human bronchial epithelial cells were exposed to the nine CNT/F (0-24 mu g/ml) to determine cell viability, inflammation, cellular oxidative stress, micronuclei formation, and DNA double-strand breakage. Computational modeling was used to understand various permutations of physicochemical characteristics and toxicity outcomes. Results Analyses of the CNT/F physicochemical characteristics illustrate that using detailed distributions of physical dimensions provided a more consistent grouping of CNT/F compared to using particle dimension means alone. In fact, analysis of binning of nominal tube physical dimensions alone produced a similar grouping as all characterization parameters together. All materials induced epithelial cell toxicity and micronuclei formation within the dose range tested. Cellular oxidative stress, DNA double strand breaks, and micronuclei formation consistently clustered together and with larger physical CNT/F dimensions and agglomerate characteristics but were distinct from inflammatory protein changes. Larger nominal tube diameters, greater lengths, and bundled agglomerate characteristics were associated with greater severity of effect. The portion of tubes with greater nominal length and larger diameters within a sample was not the majority in number, meaning a smaller percentage of tubes with these characteristics was sufficient to increase toxicity. Many of the traditional physicochemical characteristics including surface area, density, impurities, and dustiness did not cluster with the toxicity outcomes. Conclusion Distributions of physical dimensions provided more consistent grouping of CNT/F with respect to toxicity outcomes compared to means only. All CNT/F induced some level of genotoxicity in human epithelial cells. The severity of toxicity was dependent on the sample containing a proportion of tubes with greater nominal lengths and diameters
Mitsui-7, heat-treated, and nitrogen-doped multi-walled carbon nanotubes elicit genotoxicity in human lung epithelial cells
Background: The unique physicochemical properties of multi-walled carbon nanotubes (MWCNT) have led to many industrial applications. Due to their low density and small size, MWCNT are easily aerosolized in the workplace making respiratory exposures likely in workers. The International Agency for Research on Cancer designated the pristine Mitsui-7 MWCNT (MWCNT-7) as a Group 2B carcinogen, but there was insufficient data to classify all other MWCNT. Previously, MWCNT exposed to high temperature (MWCNT-HT) or synthesized with nitrogen (MWCNT-ND) have been found to elicit attenuated toxicity; however, their genotoxic and carcinogenic potential are not known. Our aim was to measure the genotoxicity of MWCNT-7 compared to these two physicochemically-altered MWCNTs in human lung epithelial cells (BEAS-2B & SAEC). Results: Dose-dependent partitioning of individual nanotubes in the cell nuclei was observed for each MWCNT material and was greatest for MWCNT-7. Exposure to each MWCNT led to significantly increased mitotic aberrations with multi- and monopolar spindle morphologies and fragmented centrosomes. Quantitative analysis of the spindle pole demonstrated significantly increased centrosome fragmentation from 0.024–2.4 μg/mL of each MWCNT. Significant aneuploidy was measured in a dose-response from each MWCNT-7, HT, and ND; the highest dose of 24 μg/mL produced 67, 61, and 55%, respectively. Chromosome analysis demonstrated significantly increased centromere fragmentation and translocations from each MWCNT at each dose. Following 24 h of exposure to MWCNT-7, ND and/or HT in BEAS-2B a significant arrest in the G1/S phase in the cell cycle occurred, whereas the MWCNT-ND also induced a G2 arrest. Primary SAEC exposed for 24 h to each MWCNT elicited a significantly greater arrest in the G1 and G2 phases. However, SAEC arrested in the G1/S phase after 72 h of exposure. Lastly, a significant increase in clonal growth was observed one month after exposure to 0.024 μg/mL MWCNT-HT & ND. Conclusions: Although MWCNT-HT & ND cause a lower incidence of genotoxicity, all three MWCNTs cause the same type of mitotic and chromosomal disruptions. Chromosomal fragmentation and translocations have not been observed with other nanomaterials. Because in vitro genotoxicity is correlated with in vivo genotoxic response, these studies in primary human lung cells may predict the genotoxic potency in exposed human populations
TRY plant trait database – enhanced coverage and open access
Plant traits - the morphological, anatomical, physiological, biochemical and phenological characteristics of plants - determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits - almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives
The James Webb Space Telescope Mission
Twenty-six years ago a small committee report, building on earlier studies,
expounded a compelling and poetic vision for the future of astronomy, calling
for an infrared-optimized space telescope with an aperture of at least .
With the support of their governments in the US, Europe, and Canada, 20,000
people realized that vision as the James Webb Space Telescope. A
generation of astronomers will celebrate their accomplishments for the life of
the mission, potentially as long as 20 years, and beyond. This report and the
scientific discoveries that follow are extended thank-you notes to the 20,000
team members. The telescope is working perfectly, with much better image
quality than expected. In this and accompanying papers, we give a brief
history, describe the observatory, outline its objectives and current observing
program, and discuss the inventions and people who made it possible. We cite
detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space
Telescope Overview, 29 pages, 4 figure
Finishing the euchromatic sequence of the human genome
The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead