41 research outputs found

    Comparative Growth and Survival of Juvenile Atlantic Cod (Gadus morhua)Cultured in Copper and Nylon Net Pens

    Get PDF
    Bio-fouling on net pens has been a major concern for the marine aquaculture industry. As cage systems increase in size, so does the surface area for the attachment of colonial organisms that create drag on the net, reduce water flow important to fish health, and increase operational expenses due to net cleaning. To solve this problem, the International Copper Association (ICA) has been developing copper alloy netting for sea cages. Copper netting has unique properties that minimize bio-fouling, reduce the risk of fish escapement, prevent predators from entering the net pen, and is recyclable. To test the alloy netting, an experiment was conducted to compare juvenile cod cultured in traditional nylon nets with cod grown in Seawire copper netting ([email protected]). Six, 0.78 m3 cages were each stocked with 200 Atlantic cod (Gadus morhua) averaging 29 ± 2.2 g and grown for 4 months in coastal waters of New Hampshire, USA. Results of the study indicated no significant differences in cod growth, survival, feed conversion ratio (FCR), specific growth rate (SGR), or Fulton’s condition factor (K) between the fish grown in the copper alloy and nylon nets. A chemical analysis was conducted on the cod and indicated no differences in copper levels in muscle, liver and gill tissues taken from the net treatments. Nylon nets with antifouling paint accumulated significantly more bio-fouling than the copper nets. Materials that were in direct contact with the copper netting (plastic cable ties) fouled heavily with hydroids indicating minimal leaching to the environment. This study describes some of the beneficial attributes of copper netting, however future studies need to be conducted over a longer period of time, on a larger scale, and in a more energetic environment to definitively test the utility of this new product

    Gemini-South + FLAMINGOS Demonstration Science: Near-Infrared Spectroscopy of the z=5.77 Quasar SDSS J083643.85+005453.3

    Full text link
    We report an infrared 1-1.8 micron (J+H-bands), low-resolution (R=450) spectrogram of the highest-redshift radio-loud quasar currently known, SDSS J083643.85+005453.3, obtained during the spectroscopic commissioning run of the FLAMINGOS multi-object, near-infrared spectrograph at the 8m Gemini-South Observatory. These data show broad emission from both CIV 1549 and CIII] 1909, with strengths comparable to lower-redshift quasar composite spectra. The implication is that there is substantial enrichment of the quasar environment, even at times less than a billion years after the Big Bang. The redshift derived from these features is z = 5.774 +/- 0.003, more accurate and slightly lower than the z = 5.82 reported in the discovery paper based on the partially-absorbed Lyman-alpha emission line. The infrared continuum is significantly redder than lower-redshift quasar composites. Fitting the spectrum from 1.0 to 1.7 microns with a power law f(nu) ~ nu^(-alpha), the derived power law index is alpha = 1.55 compared to the average continuum spectral index = 0.44 derived from the first SDSS composite quasar. Assuming an SMC-like extinction curve, we infer a color excess of E(B-V) = 0.09 +/- 0.01 at the quasar redshift. Only approximately 6% of quasars in the optically-selected Sloan Digital Sky Survey show comparable levels of dust reddening.Comment: 10 pages, 1 figure; to appear in the Astrophysical Journal Letter

    Engaging community pharmacists in the primary prevention of cardiovascular disease: protocol for the Pharmacist Assessment of Adherence, Risk and Treatment in Cardiovascular Disease (PAART CVD) pilot study

    Get PDF
    Background: Cardiovascular disease (CVD) is the leading cause of death globally. Community pharmacist intervention studies have demonstrated clinical effectiveness for improving several leading individual CVD risk factors. Primary prevention strategies increasingly emphasise the need for consideration of overall cardiovascular risk and concurrent management of multiple risk factors. It is therefore important to demonstrate the feasibility of multiple risk factor management by community pharmacists to ensure continued currency of their role.Methods/Design: This study will be a longitudinal pre- and post-test pilot study with a single cohort of up to 100 patients in ten pharmacies. Patients aged 50-74 years with no history of heart disease or diabetes, and taking antihypertensive or lipid-lowering medicines, will be approached for participation. Assessment of cardiovascular risk, medicines use and health behaviours will be undertaken by a research assistant at baseline and following the intervention (6 months). Validated interview scales will be used where available. Baseline data will be used by accredited medicines management pharmacists to generate a report for the treating community pharmacist. This report will highlight individual patients&rsquo; overall CVD risk and individual risk factors, as well as identifying modifiablehealth behaviours for risk improvement and suggesting treatment and behavioural goals. The treating community pharmacist will use this information to finalise and implement a treatment plan in conjunction with the patient and their doctor. Community pharmacists will facilitate patient improvements in lifestyle, medicines adherence, and medicines management over the course of five counselling sessions with monthly intervals. The primary outcome will be the change to average overall cardiovascular risk, assessed using the Framingham risk equation.Discussion: This study will assess the feasibility of implementing holistic primary CVD prevention programs into community pharmacy, one of the most accessible health services in most developed countries.<br /

    The Science Performance of JWST as Characterized in Commissioning

    Full text link
    This paper characterizes the actual science performance of the James Webb Space Telescope (JWST), as determined from the six month commissioning period. We summarize the performance of the spacecraft, telescope, science instruments, and ground system, with an emphasis on differences from pre-launch expectations. Commissioning has made clear that JWST is fully capable of achieving the discoveries for which it was built. Moreover, almost across the board, the science performance of JWST is better than expected; in most cases, JWST will go deeper faster than expected. The telescope and instrument suite have demonstrated the sensitivity, stability, image quality, and spectral range that are necessary to transform our understanding of the cosmos through observations spanning from near-earth asteroids to the most distant galaxies.Comment: 5th version as accepted to PASP; 31 pages, 18 figures; https://iopscience.iop.org/article/10.1088/1538-3873/acb29

    The James Webb Space Telescope Mission

    Full text link
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4m4m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5m6.5m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 years, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space Telescope Overview, 29 pages, 4 figure

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Toxic metal(loid) speciation during weathering of iron sulfide mine tailings under semi-arid climate

    Get PDF
    Toxic metalliferous mine-tailings pose a significant health risk to ecosystems and neighboring communities from wind and water dispersion of particulates containing high concentrations of toxic metal(loid)s (e.g., Pb, As, Zn). Tailings are particularly vulnerable to erosion before vegetative cover can be reestablished, i.e., decades or longer in semi-arid environments without intervention. Metal(loid) speciation, linked directly to bioaccessibility and lability, is controlled by mineral weathering and is a key consideration when assessing human and environmental health risks associated with mine sites. At the semi-arid Iron King Mine and Humboldt Smelter Superfund site in central Arizona, the mineral assemblage of the top 2 m of tailings has been previously characterized. A distinct redox gradient was observed in the top 0.5 m of the tailings and the mineral assemblage indicates progressive transformation of ferrous iron sulfides to ferrihydrite and gypsum, which, in turn weather to form schwertmannite and then jarosite accompanied by a progressive decrease in pH (7.3 to 2.3). Within the geochemical context of this reaction front, we examined enriched toxic metal(loid)s As, Pb, and Zn with surficial concentrations 41.1, 10.7, 39.3 mM kg-1 (3080, 2200, and 2570 mg kg-1), respectively. The highest bulk concentrations of As and Zn occur at the redox boundary representing a 1.7 and 4.2 fold enrichment relative to surficial concentrations, respectively, indicating the translocation of toxic elements from the gossan zone to either the underlying redox boundary or the surface crust. Metal speciation was also examined as a function of depth using X-ray absorption spectroscopy (XAS). The deepest sample (180 cm) contains sulfides (e.g., pyrite, arsenopyrite, galena, and sphalerite). Samples from the redox transition zone (25-54 cm) contain a mixture of sulfides, carbonates (siderite, ankerite, cerrusite, and smithsonite) and metal(loid)s sorbed to neoformed secondary Fe phases, principally ferrihydrite. In surface samples (0-35 cm), metal(loid)s are found as sorbed species or incorporated into secondary Fe hydroxysulfate phases, such as schwertmannite and jarosites. Metal-bearing efflorescent salts (e.g., ZnSO4·nH2O) were detected in the surficial sample. Taken together, these data suggest the bioaccessibility and lability of metal(loid)s are altered by mineral weathering, which results in both the downward migration of metal(loid)s to the redox boundary, as well as the precipitation of metal salts at the surface.24 month embargo; published online: 7 February 2015This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    FORCE CONSTANT CALCULATIONS FOR MOLECULES WITH FREE INTERNAL ROTATION

    No full text
    Author Institution: Division of Pure Physics, National Research CouncilThe usual FG matrix method for the calculation of fundamental frequencies and normal co-ordinates must be modified before application to a molecule with free internal rotation. The need for a modification arises because in general for such a molecule the elements of the F and G matrices, and therefore the fundamental frequencies and normal co-ordinates, depend on the torsional angle γ\gamma. Thus an FG calculation must be performed for several values of γ\gamma in order to determine how the fundamental frequencies and normal co-ordinates vary with γ\gamma. A numerical normal co-ordinate calculation has been performed on the dimethylacetylene and methylsilylacetylene molecules using an IBM 360 computer. The results of these calculations show how the normal co-ordinates and fundamental frequencies vary with γ\gamma on introducing a slight γ\gamma-dependence into some of the elements of the F-matrix, symmetry co-ordinates having been chosen so that the G-matrix is independent of γ\gamma. The results also show how the values of the fundamental frequencies and species of the normal co-ordinates change with the force field. It is also hoped to present the results of calculations of the Coriolis coupling constants and centrifugal distortion constants
    corecore