86 research outputs found

    Cancer in the offspring of radiation workers: an investigation of employment timing and a reanalysis using updated dose information

    Get PDF
    An earlier case-control study found no evidence of paternal preconceptional irradiation (PPI) as a cause of childhood leukaemia and non-Hodgkin's lymphoma (LNHL). Although fathers of children with LNHL were more likely to have been radiation workers, the risk was most marked in those with doses below the level of detection. The timing of paternal employment as a radiation worker has now been examined. The previously reported elevated risk of LNHL in the children of male radiation workers was limited to those whose fathers were still radiation workers at conception or whose employment also continued until diagnosis. Children whose fathers stopped radiation work prior to their conception were found to have no excess risk of LNHL. It was not possible to distinguish between the risks associated with paternal radiation work at conception and at the time of diagnosis. A reanalysis of the original study hypothesis incorporating updated dosimetric information gave similar results to those obtained previously. In particular, the risks of LNHL did not show an association with radiation doses received by the father before conception. It seems likely that the increased risk of LNHL among the children of male radiation workers is associated with an increased exposure to some infective agent consequent on high levels of population mixing

    On-line analysis and in situ pH monitoring of mixed acid fermentation by Escherichia coli using combined FTIR and Raman techniques

    Get PDF
    We introduce an experimental setup allowing continuous monitoring of bacterial fermentation processes by simultaneous optical density (OD) measurements, long-path FTIR headspace monitoring of CO2, acetaldehyde and ethanol, and liquid Raman spectroscopy of acetate, formate, and phosphate anions, without sampling. We discuss which spectral features are best suited for detection, and how to obtain partial pressures and concentrations by integrations and least squares fitting of spectral features. Noise equivalent detection limits are about 2.6 mM for acetate and 3.6 mM for formate at 5 min integration time, improving to 0.75 mM for acetate and 1.0 mM for formate at 1 h integration. The analytical range extends to at least 1 M with a standard deviation of percentage error of about 8%. The measurement of the anions of the phosphate buffer allows the spectroscopic, in situ determination of the pH of the bacterial suspension via a modified Henderson-Hasselbalch equation in the 6–8 pH range with an accuracy better than 0.1. The 4 m White cell FTIR measurements provide noise equivalent detection limits of 0.21 ΞΌbar for acetaldehyde and 0.26 ΞΌbar for ethanol in the gas phase, corresponding to 3.2 ΞΌM acetaldehyde and 22 ΞΌM ethanol in solution, using Henry’s law. The analytical dynamic range exceeds 1 mbar ethanol corresponding to 85 mM in solution. As an application example, the mixed acid fermentation of Escherichia coli is studied. The production of CO2, ethanol, acetaldehyde, acids such as formate and acetate, and the changes in pH are discussed in the context of the mixed acid fermentation pathways. Formate decomposition into CO2 and H2 is found to be governed by a zeroth-order kinetic rate law, showing that adding exogenous formate to a bioreactor with E. coli is expected to have no beneficial effect on the rate of formate decomposition and biohydrogen production

    Abrogation of the radiation-induced G2 checkpoint by the staurosporine derivative UCN-01 is associated with radiosensitisation in a subset of colorectal tumour cell lines

    Get PDF
    Ionising radiation is commonly used in the treatment of colorectal cancer. Tumour cells with mutant p53 undergo cell cycle arrest at G2/M after ionising radiation and evidence suggests that abrogation of this G2 arrest can lead to a premature, aberrant mitosis, thus enhancing ionising radiation-induced cell killing. The G2 checkpoint inhibitor UCN-01 was thus investigated to determine whether it would abrogate the G2 checkpoint induced by 5 Gy ionising radiation in a range of colorectal tumour cell lines. Data presented show that, at doses that are alone non-toxic to the cells, UCN-01 inhibits the ionising radiation-induced G2 checkpoint in five colorectal tumour cell lines with mutant p53. The ability of UCN-01 to sensitise cells to ionising radiation-induced growth inhibition and apoptosis was also investigated and UCN-01 was found to radiosensitise two out of five cell lines. These results were confirmed by long-term colony forming efficiency studies. These results demonstrate that abrogation of the ionising radiation-induced G2 checkpoint is not necessarily associated with sensitisation to ionising radiation, however, some colorectal tumour cell lines can be radiosensitised by UCN-01. Although the mechanism of radiosensitisation is not clear, this may still be an important treatment strategy

    Optimization of insect cell based protein production processes - online monitoring, expression systems, scale-up

    Get PDF
    Due to the increasing use of insect cell based expression systems in research and industrial recombinant protein production, the development of efficient and reproducible production processes remains a challenging task. In this context, the application of online monitoring techniques is intended to ensure high and reproducible product qualities already during the early phases of process development. In the following chapter, the most common transient and stable insect cell based expression systems are briefly introduced. Novel applications of insect cell based expression systems for the production of insect derived antimicrobial peptides/proteins (AMPs) are discussed using the example of G. mellonella derived gloverin. Suitable in situ sensor techniques for insect cell culture monitoring in disposable and common bioreactor systems are outlined with respect to optical and capacitive sensor concepts. Since scale-up of production processes is one of the most critical steps in process development, a conclusive overview is given about scale up aspects for industrial insect cell culture processes

    PS Integrins and Laminins: Key Regulators of Cell Migration during Drosophila Embryogenesis

    Get PDF
    During embryonic development, there are numerous cases where organ or tissue formation depends upon the migration of primordial cells. In the Drosophila embryo, the visceral mesoderm (vm) acts as a substrate for the migration of several cell populations of epithelial origin, including the endoderm, the trachea and the salivary glands. These migratory processes require both integrins and laminins. The current model is that Ξ±PS1Ξ²PS (PS1) and/or Ξ±PS3Ξ²PS (PS3) integrins are required in migrating cells, whereas Ξ±PS2Ξ²PS (PS2) integrin is required in the vm, where it performs an as yet unidentified function. Here, we show that PS1 integrins are also required for the migration over the vm of cells of mesodermal origin, the caudal visceral mesoderm (CVM). These results support a model in which PS1 might have evolved to acquire the migratory function of integrins, irrespective of the origin of the tissue. This integrin function is highly specific and its specificity resides mainly in the extracellular domain. In addition, we have identified the Laminin Ξ±1,2 trimer, as the key extracellular matrix (ECM) component regulating CVM migration. Furthermore, we show that, as it is the case in vertebrates, integrins, and specifically PS2, contributes to CVM movement by participating in the correct assembly of the ECM that serves as tracks for migration

    Graphene membranes for water desalination

    Get PDF
    Extensive environmental pollution caused by worldwide industrialization and population growth has led to a water shortage. This problem lowers the quality of human life and wastes a large amount of money worldwide each year due to the related consequences. One main solution for this challenge is water purification. State-of-the-art water purification necessitates the implementation of novel materials and technologies that are cost and energy efficient. In this regard, graphene nanomaterials, with their unique physicochemical properties, are an optimum choice. These materials offer extraordinarily high surface area, mechanical durability, atomic thickness, nanosized pores and reactivity toward polar and non-polar water pollutants. These characteristics impart high selectivity and water permeability, and thus provide excellent water purification efficiency. This review introduces the potential of graphene membranes for water desalination. Although literature reviews have mostly concerned graphene's capability for the adsorption and photocatalysis of water pollutants, updated knowledge related to its sieving properties is quite limited.Peer reviewe

    2017 HRS/EHRA/ECAS/APHRS/SOLAECE expert consensus statement on catheter and surgical ablation of atrial fibrillation: executive summary.

    Get PDF
    S

    Reducing the Activity and Secretion of Microbial Antioxidants Enhances the Immunogenicity of BCG

    Get PDF
    BACKGROUND:In early clinical studies, the live tuberculosis vaccine Mycobacterium bovis BCG exhibited 80% protective efficacy against pulmonary tuberculosis (TB). Although BCG still exhibits reliable protection against TB meningitis and miliary TB in early childhood it has become less reliable in protecting against pulmonary TB. During decades of in vitro cultivation BCG not only lost some genes due to deletions of regions of the chromosome but also underwent gene duplication and other mutations resulting in increased antioxidant production. METHODOLOGY/PRINCIPAL FINDINGS:To determine whether microbial antioxidants influence vaccine immunogenicity, we eliminated duplicated alleles encoding the oxidative stress sigma factor SigH in BCG Tice and reduced the activity and secretion of iron co-factored superoxide dismutase. We then used assays of gene expression and flow cytometry with intracellular cytokine staining to compare BCG-specific immune responses in mice after vaccination with BCG Tice or the modified BCG vaccine. Compared to BCG, the modified vaccine induced greater IL-12p40, RANTES, and IL-21 mRNA in the spleens of mice at three days post-immunization, more cytokine-producing CD8+ lymphocytes at the peak of the primary immune response, and more IL-2-producing CD4+ lymphocytes during the memory phase. The modified vaccine also induced stronger secondary CD4+ lymphocyte responses and greater clearance of challenge bacilli. CONCLUSIONS/SIGNIFICANCE:We conclude that antioxidants produced by BCG suppress host immune responses. These findings challenge the hypothesis that the failure of extensively cultivated BCG vaccines to prevent pulmonary tuberculosis is due to over-attenuation and suggest instead a new model in which BCG evolved to produce more immunity-suppressing antioxidants. By targeting these antioxidants it may be possible to restore BCG's ability to protect against pulmonary TB
    • …
    corecore