375 research outputs found

    Crystallization Kinetics of Colloidal Spheres under Stationary Shear Flow

    Get PDF
    A systematic experimental study of dispersions of charged colloidal spheres is presented on the effect of steady shear flow on nucleation and crystal-growth rates. In addition, the non-equilibrium phase diagram as far as the melting line is concerned is measured. Shear flow is found to strongly affect induction times, crystal growth rates and the location of the melting line. The main findings are that (i) the crystal growth rate for a given concentration exhibits a maximum as a function of the shear rate, (ii) contrary to the monotonous increase of the growth rate with increasing concentration in the absence of flow, a maximum of the crystal growth rate as a function of concentration is observed for sheared systems, and (iii) the induction time for a given concentration exhibits a maximum as a function of the shear rate. These findings will be partly explained on a qualitative level.Comment: 17 pages, 10 figures, accepted in Langmui

    Constraints on global oceanic emissions of N2O from observations and models

    Get PDF
    We estimate the global ocean N2O flux to the atmosphere and its confidence interval using a statistical method based on model perturbation simulations and their fit to a database of ΔpN2O (n =  6136). We evaluate two submodels of N2O production. The first submodel splits N2O production into oxic and hypoxic pathways following previous publications. The second submodel explicitly represents the redox transformations of N that lead to N2O production (nitrification and hypoxic denitrification) and N2O consumption (suboxic denitrification), and is presented here for the first time. We perturb both submodels by modifying the key parameters of the N2O cycling pathways (nitrification rates; NH4+ uptake; N2O yields under oxic, hypoxic and suboxic conditions) and determine a set of optimal model parameters by minimisation of a cost function against four databases of N cycle observations. Our estimate of the global oceanic N2O flux resulting from this cost function minimisation derived from observed and model ΔpN2O concentrations is 2.4 ± 0.8 and 2.5 ± 0.8 Tg N yr−1 for the two N2O submodels. These estimates suggest that the currently available observational data of surface ΔpN2O constrain the global N2O flux to a narrower range relative to the large range of results presented in the latest IPCC report

    Corrigendum: Short-lived positron emitters in beam-on PET imaging during proton therapy (2015 Phys. Med. Biol. 60 8923)

    Get PDF
    Because of strong indications of multiple counting by the multi-channel scaler (MCS) during most of the experiments described in Dendooven et al (2015 Phys. Med. Biol. 60 8923–47), the production of short-lived positron emitters in the stopping of 55 MeV protons in water, carbon, phosphorus and calcium was remeasured. The new results are reported here. With proper single counting of the MCS, the new production rates are 1.1 to 2.9 times smaller than reported in Dendooven et al (2015 Phys. Med. Biol. 60 8923–47). The omission of the conversion from MCS time bin to time unit in the previous data analysis was corrected, leading to an increase of the production rate by a factor of 2.5 or 10 for some nuclides. The most copiously produced short-lived nuclides and their production rates relative to the relevant long-lived nuclides are: 12N (T 1/2  =  11 ms) on carbon (5.3% of 11C), 29P (T 1/2  =  4.1 s) on phosphorus (23% of 30P) and 38mK (T 1/2  =  0.92 s) on calcium (173% of 38gK). The number of decays integrated from the start of an irradiation as a function of time during the irradiation of PMMA and 4 tissue materials has been determined. For (carbon-rich) adipose tissue, 12N dominates up to 70 s. On bone tissue, 38mK dominates the beam-on PET counts from 0.2–0.7 s until about 80–110 s. Considering nuclides created on phosphorus and calcium, the short-lived ones provide 8 times more decays than the long-lived ones during a 70 s irradiation. Bone tissue will thus be much better visible in beam-on PET compared to PET imaging after an irradiation. From the estimated number of 12N PET counts, we conclude that, for any tissue, except carbon-poor ones, 12N PET imaging potentially provides equal quality proton range information as prompt gamma imaging with an optimized knife-edge slit camera

    Reading, Trauma and Literary Caregiving 1914-1918: Helen Mary Gaskell and the War Library

    Get PDF
    This article is about the relationship between reading, trauma and responsive literary caregiving in Britain during the First World War. Its analysis of two little-known documents describing the history of the War Library, begun by Helen Mary Gaskell in 1914, exposes a gap in the scholarship of war-time reading; generates a new narrative of "how," "when," and "why" books went to war; and foregrounds gender in its analysis of the historiography. The Library of Congress's T. W. Koch discovered Gaskell's ground-breaking work in 1917 and reported its successes to the American Library Association. The British Times also covered Gaskell's library, yet researchers working on reading during the war have routinely neglected her distinct model and method, skewing the research base on war-time reading and its association with trauma and caregiving. In the article's second half, a literary case study of a popular war novel demonstrates the extent of the "bitter cry for books." The success of Gaskell's intervention is examined alongside H. G. Wells's representation of textual healing. Reading is shown to offer sick, traumatized and recovering combatants emotional and psychological caregiving in ways that she could not always have predicted and that are not visible in the literary/historical record

    Methods for interpreting lists of affected genes obstained in a DNA microarray experiment

    Get PDF
    Background - The aim of this paper was to describe and compare the methods used and the results obtained by the participants in a joint EADGENE (European Animal Disease Genomic Network of Excellence) and SABRE (Cutting Edge Genomics for Sustainable Animal Breeding) workshop focusing on post analysis of microarray data. The participating groups were provided with identical lists of microarray probes, including test statistics for three different contrasts, and the normalised log-ratios for each array, to be used as the starting point for interpreting the affected probes. The data originated from a microarray experiment conducted to study the host reactions in broilers occurring shortly after a secondary challenge with either a homologous or heterologous species of Eimeria. Results - Several conceptually different analytical approaches, using both commercial and public available software, were applied by the participating groups. The following tools were used: Ingenuity Pathway Analysis, MAPPFinder, LIMMA, GOstats, GOEAST, GOTM, Globaltest, TopGO, ArrayUnlock, Pathway Studio, GIST and AnnotationDbi. The main focus of the approaches was to utilise the relation between probes/genes and their gene ontology and pathways to interpret the affected probes/genes. The lack of a well-annotated chicken genome did though limit the possibilities to fully explore the tools. The main results from these analyses showed that the biological interpretation is highly dependent on the statistical method used but that some common biological conclusions could be reached. Conclusion - It is highly recommended to test different analytical methods on the same data set and compare the results to obtain a reliable biological interpretation of the affected genes in a DNA microarray experimen

    Recent variability of the global ocean carbon sink

    Get PDF
    We present a new observation-based estimate of the global oceanic carbon dioxide (CO2) sink and its temporal variation on a monthly basis from 1998 through 2011 and at a spatial resolution of 1×1. This sink estimate rests upon a neural network-based mapping of global surface ocean observations of the partial pressure of CO2 (pCO2) from the Surface Ocean CO2 Atlas database. The resulting pCO2 has small biases when evaluated against independent observations in the different ocean basins, but larger randomly distributed differences exist particularly in high latitudes. The seasonal climatology of our neural network-based product agrees overall well with the Takahashi et al. (2009) climatology, although our product produces a stronger seasonal cycle at high latitudes. From our global pCO2 product, we compute a mean net global ocean (excluding the Arctic Ocean and coastal regions) CO2 uptake flux of −1.42 ± 0.53 Pg C yr−1, which is in good agreement with ocean inversion-based estimates. Our data indicate a moderate level of interannual variability in the ocean carbon sink (±0.12 Pg C yr−1, 1𝜎) from 1998 through 2011, mostly originating from the equatorial Pacific Ocean, and associated with the El Nino–Southern Oscillation. Accounting for steady state riverine and Arctic Ocean carbon fluxes our estimate further implies a mean anthropogenic CO2 uptake of −1.99 ± 0.59 Pg C yr−1 over the analysis period. From this estimate plus the most recent estimates for fossil fuel emissions and atmospheric CO2 accumulation, we infer a mean global land sink of −2.82 ± 0.85 Pg C yr−1 over the 1998 through 2011 period with strong interannual variation

    Evaluating Oceanic Uptake of Atmospheric CCl4: A Combined Analysis of Model Simulations and Observations

    Get PDF
    We provide new estimates of the air‐sea flux of CCl4 using simulations from a global ocean biogeochemistry model (NEMO‐PlankTOM) in combination with depth‐resolved CCl4 observations from global oceanic databases. Estimates of global oceanic CCl4 uptake are derived from a range of model analyses, including prescribed parameterizations using reported values on hydrolysis and degradation, and analyses optimized using the global observational databases. We evaluate the sensitivity of our results to uncertainties in air‐sea gas exchange parameterization, estimation period, and circulation processes. Our best constrained estimate of ocean CCl4 uptake for the period 1996–2000 is 20.1 Gg/year (range 16.6–22.7), corresponding to estimates of the partial atmospheric lifetime with respect to ocean uptake of 124 (110–150) years. This new oceanic lifetime implies higher emissions of CCl4 than currently estimated and therefore a larger missing atmospheric source of CCl4

    A squalene-hopene cyclase in Schizosaccharomyces japonicus represents a eukaryotic adaptation to sterol-limited anaerobic environments

    Get PDF
    Biosynthesis of sterols, which are key constituents of canonical eukaryotic membranes, requires molecular oxygen. Anaerobic protists and deep-branching anaerobic fungi are the only eukaryotes in which a mechanism for sterol-independent growth has been elucidated. In these organisms, tetrahymanol, formed through oxygen-independent cyclization of squalene by a squalene-tetrahymanol cyclase, acts as a sterol surrogate. This study confirms an early report [C. J. E. A. Bulder, Antonie Van Leeuwenhoek, 37, 353-358 (1971)] that Schizosaccharomyces japonicus is exceptional among yeasts in growing anaerobically on synthetic media lacking sterols and unsaturated fatty acids. Mass spectrometry of lipid fractions of anaerobically grown Sch. japonicus showed the presence of hopanoids, a class of cyclic triterpenoids not previously detected in yeasts, including hop-22(29)-ene, hop17(21)-ene, hop-21(22)-ene, and hopan-22-ol. A putative gene in Sch. japonicus showed high similarity to bacterial squalene-hopene cyclase (SHC) genes and in particular to those of Acetobacter species. No orthologs of the putative Sch. japonicus SHC were found in other yeast species. Expression of the Sch. japonicus SHC gene (Sjshc1) in Saccharomyces cerevisiae enabled hopanoid synthesis and stimulated anaerobic growth in sterol-free media, thus indicating that one or more of the hopanoids produced by SjShc1 could at least partially replace sterols. Use of hopanoids as sterol surrogates represents a previously unknown adaptation of eukaryotic cells to anaerobic growth. The fast anaerobic growth of Sch. japonicus in sterol-free media is an interesting trait for developing robust fungal cell factories for application in anaerobic industrial processes.Proteomic
    corecore