320 research outputs found

    Global nitrous oxide production determined by oxygen sensitivity of nitrification and denitrification

    Get PDF
    The ocean is estimated to contribute up to ~20% of global fluxes of atmospheric nitrous oxide (N2O), an important greenhouse gas and ozone depletion agent. Marine oxygen minimum zones contribute disproportionately to this flux. To further understand the partition of nitrification and denitrification and their environmental controls on marine N2O fluxes, we report new relationships between oxygen concentration and rates of N2O production from nitrification and denitrification directly measured with 15N tracers in the Eastern Tropical Pacific. Highest N2O production rates occurred near the oxic‐anoxic interface, where there is strong potential for N2O efflux to the atmosphere. The dominant N2O source in oxygen minimum zones was nitrate reduction, the rates of which were 1 to 2 orders of magnitude higher than those of ammonium oxidation. The presence of oxygen significantly inhibited the production of N2O from both nitrification and denitrification. These experimental data provide new constraints to a multicomponent global ocean biogeochemical model, which yielded annual oceanic N2O efflux of 1.7–4.4 Tg‐N (median 2.8 Tg‐N, 1 Tg = 1012 g), with denitrification contributing 20% to the oceanic flux. Thus, denitrification should be viewed as a net N2O production pathway in the marine environment

    Picophytoplankton biomass distribution in the global ocean

    Get PDF
    The smallest marine phytoplankton, collectively termed picophytoplankton, have been routinely enumerated by flow cytometry since the late 1980s during cruises throughout most of the world ocean. We compiled a database of 40 946 data points, with separate abundance entries for Prochlorococcus, Synechococcus and picoeukaryotes. We use average conversion factors for each of the three groups to convert the abundance data to carbon biomass. After gridding with 1? spacing, the database covers 2.4% of the ocean surface area, with the best data coverage in the North Atlantic, the South Pacific and North Indian basins, and at least some data in all other basins. The average picophytoplankton biomass is 12 ± 22 µg Cl-1 or 1.9 g Cm-2. We estimate a total global picophytoplankton biomass of 0.53–1.32 Pg C (17–39% Prochlorococcus, 12–15% Synechococcus and 49–69% picoeukaryotes), with an intermediate/best estimate of 0.74 Pg C. Future efforts in this area of research should focus on reporting calibrated cell size and collecting data in undersampled regions

    A continuous isotropic-nematic liquid crystalline transition of F-actin solutions

    Full text link
    The phase transition from the isotropic (I) to nematic (N) liquid crystalline suspension of F-actin of average length 3 μ3~\mum or above was studied by local measurements of optical birefringence and protein concentration. Both parameters were detected to be continuous in the transition region, suggesting that the I-N transition is higher than 1st order. This finding is consistent with a recent theory by Lammert, Rokhsar & Toner (PRL, 1993, 70:1650), predicting that the I-N transition may become continuous due to suppression of disclinations. Indeed, few line defects occur in the aligned phase of F-actin. Individual filaments in solutions of a few mg/ml F-actin undergo fast translational diffusion along the filament axis, whereas both lateral and rotational diffusions are suppressed.Comment: 4 pages with 4 figures. Submitted to Physical Review Letter

    Drivers and uncertainties of future global marine primary production in marine ecosystem models

    Get PDF
    Past model studies have projected a global decrease in marine net primary production (NPP) over the 21st century, but these studies focused on the multi-model mean rather than on the large inter-model differences. Here, we analyze model-simulated changes in NPP for the 21st century under IPCC's high-emission scenario RCP8.5. We use a suite of nine coupled carbon–climate Earth system models with embedded marine ecosystem models and focus on the spread between the different models and the underlying reasons. Globally, NPP decreases in five out of the nine models over the course of the 21st century, while three show no significant trend and one even simulates an increase. The largest model spread occurs in the low latitudes (between 30° S and 30° N), with individual models simulating relative changes between −25 and +40 %. Of the seven models diagnosing a net decrease in NPP in the low latitudes, only three simulate this to be a consequence of the classical interpretation, i.e., a stronger nutrient limitation due to increased stratification leading to reduced phytoplankton growth. In the other four, warming-induced increases in phytoplankton growth outbalance the stronger nutrient limitation. However, temperature-driven increases in grazing and other loss processes cause a net decrease in phytoplankton biomass and reduce NPP despite higher growth rates. One model projects a strong increase in NPP in the low latitudes, caused by an intensification of the microbial loop, while NPP in the remaining model changes by less than 0.5 %. While models consistently project increases NPP in the Southern Ocean, the regional inter-model range is also very substantial. In most models, this increase in NPP is driven by temperature, but it is also modulated by changes in light, macronutrients and iron as well as grazing. Overall, current projections of future changes in global marine NPP are subject to large uncertainties and necessitate a dedicated and sustained effort to improve the models and the concepts and data that guide their developmen

    Optimization of the All-D peptide D3 for Aβ oligomer elimination

    Get PDF
    The aggregation of amyloid-{beta} (A{beta}) is postulated to be the crucial event in Alzheimer's disease (AD). In particular, small neurotoxic A{beta} oligomers are considered to be responsible for the development and progression of AD. Therefore, elimination of thesis oligomers represents a potential causal therapy of AD. Starting from the well-characterized d-enantiomeric peptide D3, we identified D3 derivatives that bind monomeric A{beta}. The underlying hypothesis is that ligands bind monomeric A{beta} and stabilize these species within the various equilibria with A{beta} assemblies, leading ultimately to the elimination of A{beta} oligomers. One of the hereby identified d-peptides, DB3, and a head-to-tail tandem of DB3, DB3DB3, were studied in detail. Both peptides were found to: (i) inhibit the formation of Thioflavin T-positive fibrils; (ii) bind to A{beta} monomers with micromolar affinities; (iii) eliminate A{beta} oligomers; (iv) reduce A{beta}-induced cytotoxicity; and (v) disassemble preformed A{beta} aggregates. The beneficial effects of DB3 were improved by DB3DB3, which showed highly enhanced efficacy. Our approach yielded A{beta} monomer-stabilizing ligands that can be investigated as a suitable therapeutic strategy against AD

    Methods for interpreting lists of affected genes obstained in a DNA microarray experiment

    Get PDF
    Background - The aim of this paper was to describe and compare the methods used and the results obtained by the participants in a joint EADGENE (European Animal Disease Genomic Network of Excellence) and SABRE (Cutting Edge Genomics for Sustainable Animal Breeding) workshop focusing on post analysis of microarray data. The participating groups were provided with identical lists of microarray probes, including test statistics for three different contrasts, and the normalised log-ratios for each array, to be used as the starting point for interpreting the affected probes. The data originated from a microarray experiment conducted to study the host reactions in broilers occurring shortly after a secondary challenge with either a homologous or heterologous species of Eimeria. Results - Several conceptually different analytical approaches, using both commercial and public available software, were applied by the participating groups. The following tools were used: Ingenuity Pathway Analysis, MAPPFinder, LIMMA, GOstats, GOEAST, GOTM, Globaltest, TopGO, ArrayUnlock, Pathway Studio, GIST and AnnotationDbi. The main focus of the approaches was to utilise the relation between probes/genes and their gene ontology and pathways to interpret the affected probes/genes. The lack of a well-annotated chicken genome did though limit the possibilities to fully explore the tools. The main results from these analyses showed that the biological interpretation is highly dependent on the statistical method used but that some common biological conclusions could be reached. Conclusion - It is highly recommended to test different analytical methods on the same data set and compare the results to obtain a reliable biological interpretation of the affected genes in a DNA microarray experimen

    Detection of two QTL on chicken chromosome 14 for keyhole lymphet heamocyanin

    Get PDF
    A keyhole lymphet heamocyanin is an antigen which triggers Th1 type of immune response. A QTL for a primary immune response towards keyhole lymphet heamocyanin has been detected on chicken chromosome 14 in three populations. The results from the most recent population were inconsistent and varied depending on the applied QTL detection model. The major goal of the current study was the reanalysis of this data using a 2 QTL model. Additionally, in order to provide more accurate estimates of QTL effects and positions, epistasis between the QTL was considered as a potential important contributor to quantitative traits. Four statistical models were assumed: M1: A model assuming marginal additive effects of two QTL; M2: A model assuming marginal and epistatic additive effects of two QTL; M3: A model assuming marginal additive and dominance effects of two QTL; M4: A model assuming marginal additive and dominance effects of two QTL and all possible pairwise epistases. Two QTL with significant additive and dominance effects were detected on chicken chromosome 14 using model M3. One QTL was detected at 63 cM between MCW0123 and ROS0005, another at 76 cM between ROS0005 and MCW0225/NTN2Lsts1 (FDR = 0.0051). Modelling only additive effects resulted in a significantly worse fit. On the other hand, including epistatic effects did not improve fit significantly. The current study confirms previous reports of the QTL location on GGA14. A notable finding of this study is recognition of two closely related QTL for a keyhole lymphet heamocyanin response at the distal part of chicken chromosome 14

    Reading, Trauma and Literary Caregiving 1914-1918: Helen Mary Gaskell and the War Library

    Get PDF
    This article is about the relationship between reading, trauma and responsive literary caregiving in Britain during the First World War. Its analysis of two little-known documents describing the history of the War Library, begun by Helen Mary Gaskell in 1914, exposes a gap in the scholarship of war-time reading; generates a new narrative of "how," "when," and "why" books went to war; and foregrounds gender in its analysis of the historiography. The Library of Congress's T. W. Koch discovered Gaskell's ground-breaking work in 1917 and reported its successes to the American Library Association. The British Times also covered Gaskell's library, yet researchers working on reading during the war have routinely neglected her distinct model and method, skewing the research base on war-time reading and its association with trauma and caregiving. In the article's second half, a literary case study of a popular war novel demonstrates the extent of the "bitter cry for books." The success of Gaskell's intervention is examined alongside H. G. Wells's representation of textual healing. Reading is shown to offer sick, traumatized and recovering combatants emotional and psychological caregiving in ways that she could not always have predicted and that are not visible in the literary/historical record

    Evaluating Oceanic Uptake of Atmospheric CCl4: A Combined Analysis of Model Simulations and Observations

    Get PDF
    We provide new estimates of the air‐sea flux of CCl4 using simulations from a global ocean biogeochemistry model (NEMO‐PlankTOM) in combination with depth‐resolved CCl4 observations from global oceanic databases. Estimates of global oceanic CCl4 uptake are derived from a range of model analyses, including prescribed parameterizations using reported values on hydrolysis and degradation, and analyses optimized using the global observational databases. We evaluate the sensitivity of our results to uncertainties in air‐sea gas exchange parameterization, estimation period, and circulation processes. Our best constrained estimate of ocean CCl4 uptake for the period 1996–2000 is 20.1 Gg/year (range 16.6–22.7), corresponding to estimates of the partial atmospheric lifetime with respect to ocean uptake of 124 (110–150) years. This new oceanic lifetime implies higher emissions of CCl4 than currently estimated and therefore a larger missing atmospheric source of CCl4
    corecore