27 research outputs found

    Promoting Drp1-mediated mitochondrial fission in midlife prolongs healthy lifespan of Drosophila melanogaster

    Get PDF
    The accumulation of dysfunctional mitochondria has been implicated in aging, but a deeper understanding of mitochondrial dynamics and mitophagy during aging is missing. Here, we show that upregulating Drp1—a Dynamin-related protein that promotes mitochondrial fission—in midlife, prolongs Drosophila lifespan and healthspan. We find that short-term induction of Drp1, in midlife, is sufficient to improve organismal health and prolong lifespan, and observe a midlife shift toward a more elongated mitochondrial morphology, which is linked to the accumulation of dysfunctional mitochondria in aged flight muscle. Promoting Drp1-mediated mitochondrial fission, in midlife, facilitates mitophagy and improves both mitochondrial respiratory function and proteostasis in aged flies. Finally, we show that autophagy is required for the anti-aging effects of midlife Drp1-mediated mitochondrial fission. Our findings indicate that interventions that promote mitochondrial fission could delay the onset of pathology and mortality in mammals when applied in midlife

    Endogenous orienting modulates the Simon effect: critical factors in experimental design

    Get PDF
    Responses are faster when the side of stimulus and response correspond than when they do not correspond, even if stimulus location is irrelevant to the task at hand: the correspondence, spatial compatibility effect, or Simon effect. Generally, it is assumed that an automatically generated spatial code is responsible for this effect, but the precise mechanism underlying the formation of this code is still under dispute. Two major alternatives have been proposed: the referential-coding account, which can be subdivided into a static version and an attention-centered version, and the attention-shift account. These accounts hold clear-cut predictions for attentional cuing experiments. The former would assume a Simon effect irrespective of attentional cuing in its static version, whereas the attention-centered version of the referential-coding account and the attention-shift account would predict a decreased Simon effect on validly as opposed to invalidly cued trials. However, results from previous studies are equivocal to the effects of attentional cuing on the Simon effect. We argue here that attentional cueing reliably modulates the Simon effect if some crucial experimental conditions, mostly relevant for optimizing attentional allocation, are met. Furthermore, we propose that the Simon effect may be better understood within the perspective of supra-modal spatial attention, thereby providing an explanation for observed discrepancies in the literature

    Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease

    Get PDF
    Background: Experimental and clinical data suggest that reducing inflammation without affecting lipid levels may reduce the risk of cardiovascular disease. Yet, the inflammatory hypothesis of atherothrombosis has remained unproved. Methods: We conducted a randomized, double-blind trial of canakinumab, a therapeutic monoclonal antibody targeting interleukin-1β, involving 10,061 patients with previous myocardial infarction and a high-sensitivity C-reactive protein level of 2 mg or more per liter. The trial compared three doses of canakinumab (50 mg, 150 mg, and 300 mg, administered subcutaneously every 3 months) with placebo. The primary efficacy end point was nonfatal myocardial infarction, nonfatal stroke, or cardiovascular death. RESULTS: At 48 months, the median reduction from baseline in the high-sensitivity C-reactive protein level was 26 percentage points greater in the group that received the 50-mg dose of canakinumab, 37 percentage points greater in the 150-mg group, and 41 percentage points greater in the 300-mg group than in the placebo group. Canakinumab did not reduce lipid levels from baseline. At a median follow-up of 3.7 years, the incidence rate for the primary end point was 4.50 events per 100 person-years in the placebo group, 4.11 events per 100 person-years in the 50-mg group, 3.86 events per 100 person-years in the 150-mg group, and 3.90 events per 100 person-years in the 300-mg group. The hazard ratios as compared with placebo were as follows: in the 50-mg group, 0.93 (95% confidence interval [CI], 0.80 to 1.07; P = 0.30); in the 150-mg group, 0.85 (95% CI, 0.74 to 0.98; P = 0.021); and in the 300-mg group, 0.86 (95% CI, 0.75 to 0.99; P = 0.031). The 150-mg dose, but not the other doses, met the prespecified multiplicity-adjusted threshold for statistical significance for the primary end point and the secondary end point that additionally included hospitalization for unstable angina that led to urgent revascularization (hazard ratio vs. placebo, 0.83; 95% CI, 0.73 to 0.95; P = 0.005). Canakinumab was associated with a higher incidence of fatal infection than was placebo. There was no significant difference in all-cause mortality (hazard ratio for all canakinumab doses vs. placebo, 0.94; 95% CI, 0.83 to 1.06; P = 0.31). Conclusions: Antiinflammatory therapy targeting the interleukin-1β innate immunity pathway with canakinumab at a dose of 150 mg every 3 months led to a significantly lower rate of recurrent cardiovascular events than placebo, independent of lipid-level lowering. (Funded by Novartis; CANTOS ClinicalTrials.gov number, NCT01327846.

    Subseries Length in MBB Procedure for α-mixing Processes(1)

    No full text

    Folic Acid Improves Parkin-Null Phenotypes and Transiently Reduces Vulnerable Dopaminergic Neuron Mitochondrial Hydrogen Peroxide Levels and Glutathione Redox Equilibrium

    No full text
    Loss-of-function parkin mutations cause oxidative stress and degeneration of dopaminergic neurons in the substantia nigra. Several consequences of parkin mutations have been described; to what degree they contribute to selective neurodegeneration remains unclear. Specific factors initiating excessive reactive oxygen species production, inefficient antioxidant capacity, or a combination are elusive. Identifying key oxidative stress contributors could inform targeted therapy. The absence of parkin causes selective degeneration of a dopaminergic neuron cluster that is functionally homologous to the substantia nigra. By comparing observations in these to similar non-degenerating neurons, we may begin to understand mechanisms by which parkin loss of function causes selective degeneration. Using mitochondrially targeted redox-sensitive GFP2 fused with redox enzymes, we observed a sustained increased mitochondrial hydrogen peroxide levels in vulnerable dopaminergic neurons of parkin-null flies. Only transient increases in hydrogen peroxide were observed in similar but non-degenerating neurons. Glutathione redox equilibrium is preferentially dysregulated in vulnerable neuron mitochondria. To shed light on whether dysregulated glutathione redox equilibrium primarily contributes to oxidative stress, we supplemented food with folic acid, which can increase cysteine and glutathione levels. Folic acid improved survival, climbing, and transiently decreased hydrogen peroxide and glutathione redox equilibrium but did not mitigate whole-brain oxidative stress

    Immunodetection methods for grass pollen allergens on Western blots

    Full text link
    Naturally expressed nicotinic acetylcholine receptors composed of α4 and β2 subunits (α4β2-nAChR) are the predominant form of high affinity nicotine binding site in the brain implicated in nicotine reward, mediation of nicotinic cholinergic transmission, modulation of signaling through other chemical messages, and a number of neuropsychiatric disorders. To develop a model system for studies of human α4β2-nAChR allowing protein chemical, functional, pharmacological, and regulation of expression studies, human α4 and β2 subunits were stably introduced into the native nAChR-null human epithelial cell line SH-EP1. Heterologously expressed α4β2-nAChR engage in high-affinity, specific binding of 3H-labeled epibatidine (H-EBDN; macroscopic KD = 10 pM; kon = 0.74/min/nM, koff = 0.013/min). Immunofluorescence studies show α4 and β2 subunit protein expression in virtually every transfected cell, and microautoradiographic studies show expression of 125I-labeled jodo-deschloroepibatidine binding sites in most cells. H-EBDN binding competition studies reveal high affinity for nicotinic agonists and lower affinity for nicotinic antagonists. Heterologously expressed α4β2-nAChR functional studies using 86Rb+ efflux assays indicate full efficacy of epibatidine, nicotine, and acetylcholine; partial efficacy for 1,1-dimethyl-4-phenyl-piperazinium, cytisine, and suberyldicholine; competitive antagonism by dihydro-β -erythroidine, decamethonium, and methyllycaconitine; noncompetitive antagonism by mecamylamine and eserine; and mixed antagonism by pancuronium, hexamethonium, and d-tubocurarine. These results demonstrate utility of transfected SH-EP1 cells as models for studies of human α4β2-nAChR, and they also reveal complex relationships between apparent affinities of drugs for radioligand binding and functional sites on human α4β2-nAChR

    Heterologous Expression Of Human α6β4β3α5 Nicotinic Acetylcholine Receptors: Binding Properties Consistent With Their Natural Expression Require Quaternary Subunit Assembly Including The α5 Subunit

    No full text
    Heterologous expression and lesioning studies were conducted to identify possible subunit assembly partners in nicotinic acetylcholine receptors (nAChR) containing α6 subunits (α6* nAChR). SH-EP1 human epithelial cells were transfected with the requisite subunits to achieve stable expression of human α6β2, α6β4, α6β2β3, α6β4β3, or α6β4β3α5 nAChR. Cells expressing subunits needed to form α6β4β3α5 nAChR exhibited saturable [3H]epibatidine binding (Kd = 95.9 ± 8.3 pM and Bmax = 84.5 ± 1.6 fmol/mg of protein). The rank order of binding competition potency (Ki) for prototypical nicotinic compounds was α-conotoxin Mll (6 nM) \u3e nicotine (156 nM) ∼ methyllycaconitine (200 nM) \u3e α-bungarotoxin (\u3e10 μM), similar to that for nAChR in dopamine neurons displaying a distinctive pharmacology. 6-Hydroxydopamine lesioning studies indicated that β3 and α5 subunits are likely partners of the α6 subunits in nAChR expressed in dopaminergic cell bodies. Similar to findings in rodents, quantitative real-time reverse transcription-polymerase chain reactions of human brain indicated that α6 subunit mRNA expression was 13-fold higher in the substantia nigra than in the cortex or the rest of the brain. Thus, heterologous expression studies suggest that the human α5 subunit makes a critical contribution to α6β4β3α5 nAChR assembly into a ligand-binding form with native α6*-nAChR-like pharmacology and of potential physiological and pathophysiological relevance
    corecore