175 research outputs found

    Blunted Neuronal Calcium Response to Hypoxia in Naked Mole-Rat Hippocampus

    Get PDF
    Naked mole-rats are highly social and strictly subterranean rodents that live in large communal colonies in sealed and chronically oxygen-depleted burrows. Brain slices from naked mole-rats show extreme tolerance to hypoxia compared to slices from other mammals, as indicated by maintenance of synaptic transmission under more hypoxic conditions and three fold longer latency to anoxic depolarization. A key factor in determining whether or not the cellular response to hypoxia is reversible or leads to cell death may be the elevation of intracellular calcium concentration. In the present study, we used fluorescent imaging techniques to measure relative intracellular calcium changes in CA1 pyramidal cells of hippocampal slices during hypoxia. We found that calcium accumulation during hypoxia was significantly and substantially attenuated in slices from naked mole-rats compared to slices from laboratory mice. This was the case for both neonatal (postnatal day 6) and older (postnatal day 20) age groups. Furthermore, while both species demonstrated more calcium accumulation at older ages, the older naked mole-rats showed a smaller calcium accumulation response than even the younger mice. A blunted intracellular calcium response to hypoxia may contribute to the extreme hypoxia tolerance of naked mole-rat neurons. The results are discussed in terms of a general hypothesis that a very prolonged or arrested developmental process may allow adult naked mole-rat brain to retain the hypoxia tolerance normally only seen in neonatal mammals

    Global patterns of body size evolution are driven by precipitation in legless amphibians

    Get PDF
    This is the author accepted manuscript. The final version is available from Wiley via the DOI in this recordBody size shapes ecological interactions across and within species, ultimately influencing the evolution of large-scale biodiversity patterns. Therefore, macroecological studies of body size provide a link between spatial variation in selection regimes and the evolution of animal assemblages through space. Multiple hypotheses have been formulated to explain the evolution of spatial gradients of animal body size, predominantly driven by thermal (Bergmann's rule), humidity (‘water conservation hypothesis’) and resource constraints (‘resource rule’, ‘seasonality rule’) on physiological homeostasis. However, while integrative tests of all four hypotheses combined are needed, the focus of such empirical efforts needs to move beyond the traditional endotherm–ectotherm dichotomy, to instead interrogate the role that variation in lifestyles within major lineages (e.g. classes) play in creating neglected scenarios of selection via analyses of largely overlooked environment–body size interactions. Here, we test all four rules above using a global database spanning 99% of modern species of an entire Order of legless, predominantly underground-dwelling amphibians (Gymnophiona, or caecilians). We found a consistent effect of increasing precipitation (and resource abundance) on body size reductions (supporting the water conservation hypothesis), while Bergmann's, the seasonality and resource rules are rejected. We argue that subterranean lifestyles minimize the effects of aboveground selection agents, making humidity a dominant selection pressure – aridity promotes larger body sizes that reduce risk of evaporative dehydration, while smaller sizes occur in wetter environments where dehydration constraints are relaxed. We discuss the links between these principles with the physiological constraints that may have influenced the tropically-restricted global radiation of caecilians.Natural Environment Research Council (NERC)O2National Lottery - Big Lottery Fun

    The First International Mini-Symposium on Methionine Restriction and Lifespan

    Get PDF
    It has been 20 years since the Orentreich Foundation for the Advancement of Science, under the leadership Dr. Norman Orentreich, first reported that low methionine (Met) ingestion by rats extends lifespan (Orentreich et al., 1993). Since then, several studies have replicated the effects of dietary methionine restricted (MR) in delaying age-related diseases (Richie et al., 1994; Miller et al., 2005; Ables et al., 2012; Sanchez-Roman and Barja, 2013). We report the abstracts from the First International Mini-Symposium on Methionine Restriction and Lifespan held in Tarrytown, NY, September 2013. The goals were (1) to gather researchers with an interest in MR and lifespan, (2) to exchange knowledge, (3) to generate ideas for future investigations, and (4) to strengthen relationships within this community. The presentations highlighted the importance of research on cysteine, growth hormone (GH), and ATF4 in the paradigm of aging. In addition, the effects of dietary restriction or MR in the kidneys, liver, bones, and the adipose tissue were discussed. The symposium also emphasized the value of other species, e.g., the naked mole rat, Brandt's bat, and Drosophila, in aging research. Overall, the symposium consolidated scientists with similar research interests and provided opportunities to conduct future collaborative studies (Figure 3)

    Extended Longevity of Reproductives Appears to be Common in Fukomys Mole-Rats (Rodentia, Bathyergidae)

    Get PDF
    African mole-rats (Bathyergidae, Rodentia) contain several social, cooperatively breeding species with low extrinsic mortality and unusually high longevity. All social bathyergids live in multigenerational families where reproduction is skewed towards a few breeding individuals. Most of their offspring remain as reproductively inactive “helpers” in their natal families, often for several years. This “reproductive subdivision” of mole-rat societies might be of interest for ageing research, as in at least one social bathyergid (Ansell's mole-rats Fukomys anselli), breeders have been shown to age significantly slower than non-breeders. These animals thus provide excellent conditions for studying the epigenetics of senescence by comparing divergent longevities within the same genotypes without the inescapable short-comings of inter-species comparisons. It has been claimed that many if not all social mole-rat species may have evolved similar ageing patterns, too. However, this remains unclear on account of the scarcity of reliable datasets on the subject. We therefore analyzed a 20-year breeding record of Giant mole-rats Fukomys mechowii, another social bathyergid species. We found that breeders indeed lived significantly longer than helpers (ca. 1.5–2.2fold depending on the sex), irrespective of social rank or other potentially confounding factors. Considering the phylogenetic positions of F. mechowii and F. anselli and unpublished data on a third Fukomys-species (F. damarensis) showing essentially the same pattern, it seems probable that the reversal of the classic trade-off between somatic maintenance and sexual reproduction is characteristic of the whole genus and hence of the vast majority of social mole-rats

    Altered Composition of Liver Proteasome Assemblies Contributes to Enhanced Proteasome Activity in the Exceptionally Long-Lived Naked Mole-Rat

    Get PDF
    The longest-lived rodent, the naked mole-rat (Bathyergidae; Heterocephalus glaber), maintains robust health for at least 75% of its 32 year lifespan, suggesting that the decline in genomic integrity or protein homeostasis routinely observed during aging, is either attenuated or delayed in this extraordinarily long-lived species. The ubiquitin proteasome system (UPS) plays an integral role in protein homeostasis by degrading oxidatively-damaged and misfolded proteins. In this study, we examined proteasome activity in naked mole-rats and mice in whole liver lysates as well as three subcellular fractions to probe the mechanisms behind the apparently enhanced effectiveness of UPS. We found that when compared with mouse samples, naked mole-rats had significantly higher chymotrypsin-like (ChT-L) activity and a two-fold increase in trypsin-like (T-L) in both whole lysates as well as cytosolic fractions. Native gel electrophoresis of the whole tissue lysates showed that the 20S proteasome was more active in the longer-lived species and that 26S proteasome was both more active and more populous. Western blot analyses revealed that both 19S subunits and immunoproteasome catalytic subunits are present in greater amounts in the naked mole-rat suggesting that the observed higher specific activity may be due to the greater proportion of immunoproteasomes in livers of healthy young adults. It thus appears that proteasomes in this species are primed for the efficient removal of stress-damaged proteins. Further characterization of the naked mole-rat proteasome and its regulation could lead to important insights on how the cells in these animals handle increased stress and protein damage to maintain a longer health in their tissues and ultimately a longer life

    The Insulin-Like Growth Factor System in the Long-Lived Naked Mole-Rat.

    Get PDF
    Naked mole-rats (Heterocephalus glaber) (NMRs) are the longest living rodents known. They show negligible senescence, and are resistant to cancers and certain damaging effects associated with aging. The insulin-like growth factors (IGFs) have pluripotent actions, influencing growth processes in virtually every system of the body. They are established contributors to the aging process, confirmed by the demonstration that decreased IGF signaling results in life-extending effects in a variety of species. The IGFs are likewise involved in progression of cancers by mediating survival signals in malignant cells. This report presents a full characterization of the IGF system in the NMR: ligands, receptors, IGF binding proteins (IGFBPs), and IGFBP proteases. A particular emphasis was placed on the IGFBP protease, pregnancy-associated plasma protein-A (PAPP-A), shown to be an important lifespan modulator in mice. Comparisons of IGF-related genes in the NMR with human and murine sequences indicated no major differences in essential parts of the IGF system, including PAPP-A. The protease was shown to possess an intact active site despite the report of a contradictory genome sequence. Furthermore, PAPP-A was expressed and translated in NMRs cells and retained IGF-dependent proteolytic activity towards IGFBP-4 and IGF-independent activity towards IGFBP-5. However, experimental data suggest differential regulatory mechanisms for PAPP-A expression in NMRs than those described in humans and mice. This overall description of the IGF system in the NMR represents an initial step towards elucidating the complex molecular mechanisms underlying longevity, and how these animals have evolved to ensure a delayed and healthy aging process

    Oxidative stress and life histories: unresolved issues and current needs

    Get PDF
    Life-history theory concerns the trade-offs that mold the patterns of investment by animals between reproduction, growth, and survival. It is widely recognized that physiology plays a role in the mediation of life-history trade-offs, but the details remain obscure. As life-history theory concerns aspects of investment in the soma that influence survival, understanding the physiological basis of life histories is related, but not identical, to understanding the process of aging. One idea from the field of aging that has gained considerable traction in the area of life histories is that life-history trade-offs may be mediated by free radical production and oxidative stress. We outline here developments in this field and summarize a number of important unresolved issues that may guide future research efforts. The issues are as follows. First, different tissues and macromolecular targets of oxidative stress respond differently during reproduction. The functional significance of these changes, however, remains uncertain. Consequently there is a need for studies that link oxidative stress measurements to functional outcomes, such as survival. Second, measurements of oxidative stress are often highly invasive or terminal. Terminal studies of oxidative stress in wild animals, where detailed life-history information is available, cannot generally be performed without compromising the aims of the studies that generated the life-history data. There is a need therefore for novel non-invasive measurements of multi-tissue oxidative stress. Third, laboratory studies provide unrivaled opportunities for experimental manipulation but may fail to expose the physiology underpinning life-history effects, because of the benign laboratory environment. Fourth, the idea that oxidative stress might underlie life-history trade-offs does not make specific enough predictions that are amenable to testing. Moreover, there is a paucity of good alternative theoretical models on which contrasting predictions might be based. Fifth, there is an enormous diversity of life-history variation to test the idea that oxidative stress may be a key mediator. So far we have only scratched the surface. Broadening the scope may reveal new strategies linked to the processes of oxidative damage and repair. Finally, understanding the trade-offs in life histories and understanding the process of aging are related but not identical questions. Scientists inhabiting these two spheres of activity seldom collide, yet they have much to learn from each other

    Appetite and Energy Intake Responses to Acute Energy Deficits in Females versus Males.

    Get PDF
    Purpose: To explore whether compensatory responses to acute energy deficits induced by exercise or diet differ by sex. Methods: In experiment one, twelve healthy women completed three 9 h trials (control, exercise-induced (Ex-Def) and food restriction induced energy deficit (Food-Def)) with identical energy deficits being imposed in the Ex-Def (90 min run, ~70% of VO2 max) and Food-Def trials. In experiment two, 10 men and 10 women completed two 7 h trials (control and exercise). Sixty min of running (~70% of VO2 max) was performed at the beginning of the exercise trial. Participants rested throughout the remainder of the exercise trial and during the control trial. Appetite ratings, plasma concentrations of gut hormones and ad libitum energy intake were assessed during main trials. Results: In experiment one, an energy deficit of ~3500 kJ induced via food restriction increased appetite and food intake. These changes corresponded with heightened concentrations of plasma acylated ghrelin and lower peptide YY3-36. None of these compensatory responses were apparent when an equivalent energy deficit was induced by exercise. In experiment two, appetite ratings and plasma acylated ghrelin concentrations were lower in exercise than control but energy intake did not differ between trials. The appetite, acylated ghrelin and energy intake response to exercise did not differ between men and women. Conclusions: Women exhibit compensatory appetite, gut hormone and food intake responses to acute energy restriction but not in response to an acute bout of exercise. Additionally, men and women appear to exhibit similar acylated ghrelin and PYY3-36 responses to exercise-induced energy deficits. These findings advance understanding regarding the interaction between exercise and energy homeostasis in women

    Feeding into old age: long-term effects of dietary fatty acid supplementation on tissue composition and life span in mice

    Get PDF
    Smaller mammals, such as mice, possess tissues containing more polyunsaturated fatty acids (PUFAs) than larger mammals, while at the same time live shorter lives. These relationships have been combined in the ‘membrane pacemaker hypothesis of aging’. It suggests that membrane PUFA content might determine an animal’s life span. PUFAs in general and certain long-chain PUFAs in particular, are highly prone to lipid peroxidation which brings about a high rate of reactive oxygen species (ROS) production. We hypothesized that dietary supplementation of either n-3 or n-6 PUFAs might affect (1) membrane phospholipid composition of heart and liver tissues and (2) life span of the animals due to the altered membrane composition, and subsequent effects on lipid peroxidation. Therefore, we kept female laboratory mice from the C57BL/6 strain on three diets (n-3 PUFA rich, n-6 PUFA rich, control) and assessed body weights, life span, heart, and liver phospholipid composition after the animals had died. We found that while membrane phospholipid composition clearly differed between feeding groups, life span was not directly affected. However, we were able to observe a positive correlation between monounsaturated fatty acids in cardiac muscle and life span
    corecore