2,571 research outputs found
Modeling Single Electron Transfer in Si:P Double Quantum Dots
Solid-state systems such as P donors in Si have considerable potential for
realization of scalable quantum computation. Recent experimental work in this
area has focused on implanted Si:P double quantum dots (DQDs) that represent a
preliminary step towards the realization of single donor charge-based qubits.
This paper focuses on the techniques involved in analyzing the charge transfer
within such DQD devices and understanding the impact of fabrication parameters
on this process. We show that misalignment between the buried dots and surface
gates affects the charge transfer behavior and identify some of the challenges
posed by reducing the size of the metallic dot to the few donor regime.Comment: 11 pages, 7 figures, submitted to Nanotechnolog
The Research Unit VolImpact: Revisiting the volcanic impact on atmosphere and climate – preparations for the next big volcanic eruption
This paper provides an overview of the scientific background and the research objectives of the Research Unit “VolImpact” (Revisiting the volcanic impact on atmosphere and climate – preparations for the next big volcanic eruption, FOR 2820). VolImpact was recently funded by the Deutsche Forschungsgemeinschaft (DFG) and started in spring 2019. The main goal of the research unit is to improve our understanding of how the climate system responds to volcanic eruptions. Such an ambitious program is well beyond the capabilities of a single research group, as it requires expertise from complementary disciplines including aerosol microphysical modelling, cloud physics, climate modelling, global observations of trace gas species, clouds and stratospheric aerosols. The research goals will be achieved by building on important recent advances in modelling and measurement capabilities. Examples of the advances in the observations include the now daily near-global observations of multi-spectral aerosol extinction from the limb-scatter instruments OSIRIS, SCIAMACHY and OMPS-LP. In addition, the recently launched SAGE III/ISS and upcoming satellite missions EarthCARE and ALTIUS will provide high resolution observations of aerosols and clouds. Recent improvements in modeling capabilities within the framework of the ICON model family now enable simulations at spatial resolutions fine enough to investigate details of the evolution and dynamics of the volcanic eruptive plume using the large-eddy resolving version, up to volcanic impacts on larger-scale circulation systems in the general circulation model version. When combined with state-of-the-art aerosol and cloud microphysical models, these approaches offer the opportunity to link eruptions directly to their climate forcing. These advances will be exploited in VolImpact to study the effects of volcanic eruptions consistently over the full range of spatial and temporal scales involved, addressing the initial development of explosive eruption plumes (project VolPlume), the variation of stratospheric aerosol particle size and radiative forcing caused by volcanic eruptions (VolARC), the response of clouds (VolCloud), the effects of volcanic eruptions on atmospheric dynamics (VolDyn), as well as their climate impact (VolClim)
Experimental study of super-rotation in a magnetostrophic spherical Couette flow
We report measurements of electric potentials at the surface of a spherical
container of liquid sodium in which a magnetized inner core is differentially
rotating. The azimuthal angular velocities inferred from these potentials
reveal a strong super-rotation of the liquid sodium in the equatorial region,
for small differential rotation. Super-rotation was observed in numerical
simulations by Dormy et al. [1]. We find that the latitudinal variation of the
electric potentials in our experiments differs markedly from the predictions of
a similar numerical model, suggesting that some of the assumptions used in the
model - steadiness, equatorial symmetry, and linear treatment for the evolution
of both the magnetic and velocity fields - are violated in the experiments. In
addition, radial velocity measurements, using ultrasonic Doppler velocimetry,
provide evidence of oscillatory motion near the outer sphere at low latitude:
it is viewed as the signature of an instability of the super-rotating region
Charge-based quantum computing using single donors in semiconductors
Solid-state quantum computer architectures with qubits encoded using single
atoms are now feasible given recent advances in atomic doping of
semiconductors. Here we present a charge qubit consisting of two dopant atoms
in a semiconductor crystal, one of which is singly ionised. Surface electrodes
control the qubit and a radio-frequency single electron transistor provides
fast readout. The calculated single gate times, of order 50ps or less, are much
shorter than the expected decoherence time. We propose universal one- and
two-qubit gate operations for this system and discuss prospects for fabrication
and scale up.Comment: 5 pages, 4 figures, updated version submitted to Physical Review
Robust pricing and hedging of double no-touch options
Double no-touch options, contracts which pay out a fixed amount provided an
underlying asset remains within a given interval, are commonly traded,
particularly in FX markets. In this work, we establish model-free bounds on the
price of these options based on the prices of more liquidly traded options
(call and digital call options). Key steps are the construction of super- and
sub-hedging strategies to establish the bounds, and the use of Skorokhod
embedding techniques to show the bounds are the best possible.
In addition to establishing rigorous bounds, we consider carefully what is
meant by arbitrage in settings where there is no {\it a priori} known
probability measure. We discuss two natural extensions of the notion of
arbitrage, weak arbitrage and weak free lunch with vanishing risk, which are
needed to establish equivalence between the lack of arbitrage and the existence
of a market model.Comment: 32 pages, 5 figure
Success Factors of European Syndromic Surveillance Systems: A Worked Example of Applying Qualitative Comparative Analysis
Introduction: Syndromic surveillance aims at augmenting traditional public health surveillance with timely information. To gain a head start, it mainly analyses existing data such as from web searches or patient records. Despite the setup of many syndromic surveillance systems, there is still much doubt about the benefit of the approach. There are diverse interactions between performance indicators such as timeliness and various system characteristics. This makes the performance assessment of syndromic surveillance systems a complex endeavour. We assessed if the comparison of several syndromic surveillance systems through Qualitative Comparative Analysis helps to evaluate performance and identify key success factors.
Materials and Methods: We compiled case-based, mixed data on performance and characteristics of 19 syndromic surveillance systems in Europe from scientific and grey literature and from site visits. We identified success factors by applying crisp-set Qualitative Comparative Analysis. We focused on two main areas of syndromic surveillance application: seasonal influenza surveillance and situational awareness during different types of potentially health threatening events.
Results: We found that syndromic surveillance systems might detect the onset or peak of seasonal influenza earlier if they analyse non-clinical data sources. Timely situational awareness during different types of events is supported by an automated syndromic surveillance system capable of analysing multiple syndromes. To our surprise, the analysis of multiple data sources was no key success factor for situational awareness.
Conclusions: We suggest to consider these key success factors when designing or further developing syndromic surveillance systems. Qualitative Comparative Analysis helped interpreting complex, mixed data on small-N cases and resulted in concrete and practically relevant findings
One Problem, Many Solutions: Simple Statistical Approaches Help Unravel the Complexity of the Immune System in an Ecological Context
The immune system is a complex collection of interrelated and overlapping solutions to the problem of disease. To deal with this complexity, researchers have devised multiple ways to measure immune function and to analyze the resulting data. In this way both organisms and researchers employ many tactics to solve a complex problem. One challenge facing ecological immunologists is the question of how these many dimensions of immune function can be synthesized to facilitate meaningful interpretations and conclusions. We tackle this challenge by employing and comparing several statistical methods, which we used to test assumptions about how multiple aspects of immune function are related at different organizational levels. We analyzed three distinct datasets that characterized 1) species, 2) subspecies, and 3) among- and within-individual level differences in the relationships among multiple immune indices. Specifically, we used common principal components analysis (CPCA) and two simpler approaches, pair-wise correlations and correlation circles. We also provide a simple example of how these techniques could be used to analyze data from multiple studies. Our findings lead to several general conclusions. First, relationships among indices of immune function may be consistent among some organizational groups (e.g. months over the annual cycle) but not others (e.g. species); therefore any assumption of consistency requires testing before further analyses. Second, simple statistical techniques used in conjunction with more complex multivariate methods give a clearer and more robust picture of immune function than using complex statistics alone. Moreover, these simpler approaches have potential for analyzing comparable data from multiple studies, especially as the field of ecological immunology moves towards greater methodological standardization
Variables associated with nest survival of Golden-winged Warblers (Vermivora chrysoptera) among vegetation communities commonly used for nesting
Among shrubland- and young forest-nesting bird species in North America, Golden-winged Warblers (Vermivora chrysoptera) are one of the most rapidly declining partly because of limited nesting habitat. Creation and management of high quality vegetation communities used for nesting are needed to reduce declines. Thus, we examined whether common characteristics could be managed across much of the Golden-winged Warbler’s breeding range to increase daily survival rate (DSR) of nests. We monitored 388 nests on 62 sites throughout Minnesota, Wisconsin, New York, North Carolina, Pennsylvania, Tennessee, and West Virginia. We evaluated competing DSR models in spatial-temporal (dominant vegetation type, population segment, state, and year), intraseasonal (nest stage and time-within-season), and vegetation model suites. The best-supported DSR models among the three model suites suggested potential associations between daily survival rate of nests and state, time-within-season, percent grass and Rubus cover within 1 m of the nest, and distance to later successional forest edge. Overall, grass cover (negative association with DSR above 50%) and Rubus cover (DSR lowest at about 30%) within 1 m of the nest and distance to later successional forest edge (negative association with DSR) may represent common management targets across our states for increasing Golden-winged Warbler DSR, particularly in the Appalachian Mountains population segment. Context-specific adjustments to management strategies, such as in wetlands or areas of overlap with Blue-winged Warblers (Vermivora cyanoptera), may be necessary to increase DSR for Golden-winged Warblers
- …