279 research outputs found

    Modelling of plasmas used for etching semiconductors

    Get PDF

    Temperatures in cold rooms

    Get PDF

    On asymptotic nonlocal symmetry of nonlinear Schr\"odinger equations

    Full text link
    A concept of asymptotic symmetry is introduced which is based on a definition of symmetry as a reducibility property relative to a corresponding invariant ansatz. It is shown that the nonlocal Lorentz invariance of the free-particle Schr\"odinger equation, discovered by Fushchych and Segeda in 1977, can be extended to Galilei-invariant equations for free particles with arbitrary spin and, with our definition of asymptotic symmetry, to many nonlinear Schr\"odinger equations. An important class of solutions of the free Schr\"odinger equation with improved smoothing properties is obtained

    The geometry of r-adaptive meshes generated using optimal transport methods

    Get PDF
    The principles of mesh equidistribution and alignment play a fundamental role in the design of adaptive methods, and a metric tensor M and mesh metric are useful theoretical tools for understanding a methods level of mesh alignment, or anisotropy. We consider a mesh redistribution method based on the Monge-Ampere equation, which combines equidistribution of a given scalar density function with optimal transport. It does not involve explicit use of a metric tensor M, although such a tensor must exist for the method, and an interesting question to ask is whether or not the alignment produced by the metric gives an anisotropic mesh. For model problems with a linear feature and with a radially symmetric feature, we derive the exact form of the metric M, which involves expressions for its eigenvalues and eigenvectors. The eigenvectors are shown to be orthogonal and tangential to the feature, and the ratio of the eigenvalues (corresponding to the level of anisotropy) is shown to depend, both locally and globally, on the value of the density function and the amount of curvature. We thereby demonstrate how the optimal transport method produces an anisotropic mesh along a given feature while equidistributing a suitably chosen scalar density function. Numerical results are given to verify these results and to demonstrate how the analysis is useful for problems involving more complex features, including for a non-trivial time dependant nonlinear PDE which evolves narrow and curved reaction fronts

    The Artis Problem

    Get PDF
    The Artis aquarium has had difficulty maintaining a reasonable temperature in the recently install mammoth sea water tanks during the peak of summer. At this time the approximately 400 000 liters of water may be as much as 3 degrees Celsius too hot. This represents a considerable amount of energy to dissipate. Any solution to this problem must take into account the limited budget of the zoo, the heritage status of the building and the health of the fish in the tank. In this report, we analyse the major sources of energy entering and leaving the system. From this analysis, we find that the most effective method of reducing the water temperature is to increase the amount of evaporation from the system

    A Case Study in the Future Challenges in Electricity Grid Infrastructure

    Get PDF
    The generation by renewables and the loading by electrical vehicle charging imposes severe challenges in the redesign of today’s power supply systems. Indeed, accommodating these emerging power sources and sinks requires traditional power systems to evolve from rigid centralized unidirectional architectures to intelligent decentralized entities allowing a bidirectional power flow. In the case study proposed by ENDINET, we investigate how the penetration of solar panels and of battery charging stations on large scale affects the voltage quality and loss level in a distribution network servicing a residential area in Eindhoven, NL. In our case study we take the average household load during summer and winter into account and consider both a radial and meshed topology of the network. Our study results for both topologies considered in a quantification of the levels of penetration and a strategy for electrical vehicle loading strategy that meet the voltage and loss requirements in the network

    The T2K ND280 Off-Axis Pi-Zero Detector

    Full text link
    The Pi-Zero detector (P{\O}D) is one of the subdetectors that makes up the off-axis near detector for the Tokai-to-Kamioka (T2K) long baseline neutrino experiment. The primary goal for the P{\O}D is to measure the relevant cross sections for neutrino interactions that generate pi-zero's, especially the cross section for neutral current pi-zero interactions, which are one of the dominant sources of background to the electron neutrino appearance signal in T2K. The P{\O}D is composed of layers of plastic scintillator alternating with water bags and brass sheets or lead sheets and is one of the first detectors to use Multi-Pixel Photon Counters (MPPCs) on a large scale.Comment: 17 pages, submitted to NIM

    Search for the standard model Higgs boson decaying to a bbˉb\bar{b} pair in events with no charged leptons and large missing transverse energy using the full CDF data set

    Get PDF
    We report on a search for the standard model Higgs boson produced in association with a vector boson in the full data set of proton-antiproton collisions at s=1.96\sqrt{s} = 1.96 TeV recorded by the CDF II detector at the Tevatron, corresponding to an integrated luminosity of 9.45 fb1^{-1}. We consider events having no identified charged lepton, a transverse energy imbalance, and two or three jets, of which at least one is consistent with originating from the decay of a bb quark. We place 95% credibility level upper limits on the production cross section times standard model branching fraction for several mass hypotheses between 90 and 150GeV/c2150 \mathrm{GeV}/c^2. For a Higgs boson mass of 125GeV/c2125 \mathrm{GeV}/c^2, the observed (expected) limit is 6.7 (3.6) times the standard model prediction.Comment: Accepted by Phys. Rev. Let

    Search for the standard model Higgs boson decaying to a bb pair in events with one charged lepton and large missing transverse energy using the full CDF data set

    Get PDF
    We present a search for the standard model Higgs boson produced in association with a W boson in sqrt(s) = 1.96 TeV p-pbar collision data collected with the CDF II detector at the Tevatron corresponding to an integrated luminosity of 9.45 fb-1. In events consistent with the decay of the Higgs boson to a bottom-quark pair and the W boson to an electron or muon and a neutrino, we set 95% credibility level upper limits on the WH production cross section times the H->bb branching ratio as a function of Higgs boson mass. At a Higgs boson mass of 125 GeV/c2 we observe (expect) a limit of 4.9 (2.8) times the standard model value.Comment: Submitted to Phys. Rev. Lett (v2 contains clarifications suggested by PRL
    corecore