20 research outputs found

    Detailed Analysis of the Intra-Ejecta Dark Plains of Caloris Basin, Mercury

    Get PDF
    The Caloris basin on Mercury is floored by light-toned plains and surrounded by an annulus of dark-toned material interpreted to be ejecta blocks and smooth, dark, ridged plains. Strangely, preliminary crater counts indicate that these intra-ejecta dark plains are younger than the light-toned plains within the Caloris basin. This would imply a second, younger plains emplacement event, possibly involving lower albedo material volcanics, which resurfaced the original ejecta deposit. On the other hand, the dark plains may be pre-Caloris light plains covered by a thin layer of dark ejecta. Another alternative to the hypothesis of young, dark volcanism is the possibility that previous crater counts have not thoroughly distinguished between superposed craters (fresh) and partly-buried craters (old) and therefore have not accurately determined the ages of the Caloris units. This abstract outlines the tasks associated with a new mapping project of the Caloris basin, intended to improve our knowledge of the geology and geologic history of the basin, and thus facilitate an understanding of the thermal evolution of this region of Mercury

    A synthesis of Martian aqueous mineralogy after 1 Mars year of observations from the Mars Reconnaissance Orbiter

    Get PDF
    Martian aqueous mineral deposits have been examined and characterized using data acquired during Mars Reconnaissance Orbiter's (MRO) primary science phase, including Compact Reconnaissance Imaging Spectrometer for Mars hyperspectral images covering the 0.4–3.9 μm wavelength range, coordinated with higher–spatial resolution HiRISE and Context Imager images. MRO's new high-resolution measurements, combined with earlier data from Thermal Emission Spectrometer; Thermal Emission Imaging System; and Observatoire pour la Minéralogie, L'Eau, les Glaces et l'Activitié on Mars Express, indicate that aqueous minerals are both diverse and widespread on the Martian surface. The aqueous minerals occur in 9–10 classes of deposits characterized by distinct mineral assemblages, morphologies, and geologic settings. Phyllosilicates occur in several settings: in compositionally layered blankets hundreds of meters thick, superposed on eroded Noachian terrains; in lower layers of intracrater depositional fans; in layers with potential chlorides in sediments on intercrater plains; and as thousands of deep exposures in craters and escarpments. Carbonate-bearing rocks form a thin unit surrounding the Isidis basin. Hydrated silica occurs with hydrated sulfates in thin stratified deposits surrounding Valles Marineris. Hydrated sulfates also occur together with crystalline ferric minerals in thick, layered deposits in Terra Meridiani and in Valles Marineris and together with kaolinite in deposits that partially infill some highland craters. In this paper we describe each of the classes of deposits, review hypotheses for their origins, identify new questions posed by existing measurements, and consider their implications for ancient habitable environments. On the basis of current data, two to five classes of Noachian-aged deposits containing phyllosilicates and carbonates may have formed in aqueous environments with pH and water activities suitable for life
    corecore