2,018 research outputs found
COSMOGRAIL: XVII. Time delays for the quadruply imaged quasar PG 1115+080
Indexación: Scopus.Acknowledgements. The authors would like to thank R. Gredel for his help in setting up the program at the ESO MPIA 2.2 m telescope, and the anonymous referee for his or her comments on this work. This work is supported by the Swiss National Fundation. This research made use of Astropy, a community-developed core Python package for Astronomy (Astropy Collaboration et al. 2013, 2018) and the 2D graphics environment Matplotlib (Hunter 2007). K.R. acknowledge support from PhD fellowship FIB-UV 2015/2016 and Becas de Doctorado Nacional CONICYT 2017 and thanks the LSSTC Data Science Fellowship Program, her time as a Fellow has benefited this work. M.T. acknowledges support by the DFG grant Hi 1495/2-1. G. C.-F. C. acknowledges support from the Ministry of Education in Taiwan via Government Scholarship to Study Abroad (GSSA). D. C.-Y. Chao and S. H. Suyu gratefully acknowledge the support from the Max Planck Society through the Max Planck Research Group for S. H. Suyu. T. A. acknowledges support by the Ministry for the Economy, Development, and Tourism’s Programa Inicativa Científica Milenio through grant IC 12009, awarded to The Millennium Institute of Astrophysics (MAS).We present time-delay estimates for the quadruply imaged quasar PG 1115+080. Our results are based on almost daily observations for seven months at the ESO MPIA 2.2 m telescope at La Silla Observatory, reaching a signal-to-noise ratio of about 1000 per quasar image. In addition, we re-analyze existing light curves from the literature that we complete with an additional three seasons of monitoring with the Mercator telescope at La Palma Observatory. When exploring the possible source of bias we considered the so-called microlensing time delay, a potential source of systematic error so far never directly accounted for in previous time-delay publications. In 15 yr of data on PG 1115+080, we find no strong evidence of microlensing time delay. Therefore not accounting for this effect, our time-delay estimates on the individual data sets are in good agreement with each other and with the literature. Combining the data sets, we obtain the most precise time-delay estimates to date on PG 1115+080, with Δt(AB) = 8.3+1.5 -1.6 days (18.7% precision), Δt(AC) = 9.9+1.1 -1.1 days (11.1%) and Δt(BC) = 18.8+1.6 -1.6 days (8.5%). Turning these time delays into cosmological constraints is done in a companion paper that makes use of ground-based Adaptive Optics (AO) with the Keck telescope. © ESO 2018.https://www.aanda.org/articles/aa/abs/2018/08/aa33287-18/aa33287-18.htm
COSMOGRAIL XVIII: time delays of the quadruply lensed quasar WFI2033-4723
We present new measurements of the time delays of WFI2033-4723. The data sets
used in this work include 14 years of data taken at the 1.2m Leonhard Euler
Swiss telescope, 13 years of data from the SMARTS 1.3m telescope at Las
Campanas Observatory and a single year of high-cadence and high-precision
monitoring at the MPIA 2.2m telescope. The time delays measured from these
different data sets, all taken in the R-band, are in good agreement with each
other and with previous measurements from the literature. Combining all the
time-delay estimates from our data sets results in Dt_AB = 36.2-0.8+0.7 days
(2.1% precision), Dt_AC = -23.3-1.4+1.2 days (5.6%) and Dt_BC = -59.4-1.3+1.3
days (2.2%). In addition, the close image pair A1-A2 of the lensed quasars can
be resolved in the MPIA 2.2m data. We measure a time delay consistent with zero
in this pair of images. We also explore the prior distributions of microlensing
time-delay potentially affecting the cosmological time-delay measurements of
WFI2033-4723. There is however no strong indication in our measurements that
microlensing time delay is neither present nor absent. This work is part of a
H0LiCOW series focusing on measuring the Hubble constant from WFI2033-4723.Comment: Submitted to Astronomy and Astrophysic
Physics at a Neutrino Factory
In response to the growing interest in building a Neutrino Factory to produce
high intensity beams of electron- and muon-neutrinos and antineutrinos, in
October 1999 the Fermilab Directorate initiated two six-month studies. The
first study, organized by N. Holtkamp and D. Finley, was to investigate the
technical feasibility of an intense neutrino source based on a muon storage
ring. This design study has produced a report in which the basic conclusion is
that a Neutrino Factory is technically feasible, although it requires an
aggressive R&D program. The second study, which is the subject of this report,
was to explore the physics potential of a Neutrino Factory as a function of the
muon beam energy and intensity, and for oscillation physics, the potential as a
function of baseline.Comment: 133 pages, 64 figures. Report to the Fermilab Directorate. Available
from http://www.fnal.gov/projects/muon_collider/ This version fixes some
printing problem
The Blanco Cosmology Survey: Data Acquisition, Processing, Calibration, Quality Diagnostics and Data Release
The Blanco Cosmology Survey (BCS) is a 60 night imaging survey of 80
deg of the southern sky located in two fields: (,)= (5 hr,
) and (23 hr, ). The survey was carried out between
2005 and 2008 in bands with the Mosaic2 imager on the Blanco 4m
telescope. The primary aim of the BCS survey is to provide the data required to
optically confirm and measure photometric redshifts for Sunyaev-Zel'dovich
effect selected galaxy clusters from the South Pole Telescope and the Atacama
Cosmology Telescope. We process and calibrate the BCS data, carrying out PSF
corrected model fitting photometry for all detected objects. The median
10 galaxy (point source) depths over the survey in are
approximately 23.3 (23.9), 23.4 (24.0), 23.0 (23.6) and 21.3 (22.1),
respectively. The astrometric accuracy relative to the USNO-B survey is
milli-arcsec. We calibrate our absolute photometry using the stellar
locus in bands, and thus our absolute photometric scale derives from
2MASS which has % accuracy. The scatter of stars about the stellar locus
indicates a systematics floor in the relative stellar photometric scatter in
that is 1.9%, 2.2%, 2.7% and2.7%, respectively.
A simple cut in the AstrOmatic star-galaxy classifier {\tt spread\_model}
produces a star sample with good spatial uniformity. We use the resulting
photometric catalogs to calibrate photometric redshifts for the survey and
demonstrate scatter with an outlier fraction %
to . We highlight some selected science results to date and provide a
full description of the released data products.Comment: 23 pages, 23 figures . Response to referee comments. Paper accepted
for publication. BCS catalogs and images available for download from
http://www.usm.uni-muenchen.de/BC
Quasar accretion disk sizes from continuum reverberation mapping in the DES standard-star fields
Measurements of the physical properties of accretion disks in active galactic
nuclei are important for better understanding the growth and evolution of
supermassive black holes. We present the accretion disk sizes of 22 quasars
from continuum reverberation mapping with data from the Dark Energy Survey
(DES) standard star fields and the supernova C fields. We construct continuum
lightcurves with the \textit{griz} photometry that span five seasons of DES
observations. These data sample the time variability of the quasars with a
cadence as short as one day, which corresponds to a rest frame cadence that is
a factor of a few higher than most previous work. We derive time lags between
bands with both JAVELIN and the interpolated cross-correlation function method,
and fit for accretion disk sizes using the JAVELIN Thin Disk model. These new
measurements include disks around black holes with masses as small as
, which have equivalent sizes at 2500\AA \, as small as
light days in the rest frame. We find that most objects have
accretion disk sizes consistent with the prediction of the standard thin disk
model when we take disk variability into account. We have also simulated the
expected yield of accretion disk measurements under various observational
scenarios for the Large Synoptic Survey Telescope Deep Drilling Fields. We find
that the number of disk measurements would increase significantly if the
default cadence is changed from three days to two days or one day.Comment: 33 pages, 24 figure
Transfer learning for galaxy morphology from one survey to another
© 2018 The Author(s). Published by Oxford University Press on behalf of the Royal Astronomical Society.Deep Learning (DL) algorithms for morphological classification of galaxies have proven very successful, mimicking (or even improving) visual classifications. However, these algorithms rely on large training samples of labelled galaxies (typically thousands of them). A key question for using DL classifications in future Big Data surveys is how much of the knowledge acquired from an existing survey can be exported to a new dataset, i.e. if the features learned by the machines are meaningful for different data. We test the performance of DL models, trained with Sloan Digital Sky Survey (SDSS) data, on Dark Energy survey (DES) using images for a sample of 5000 galaxies with a similar redshift distribution to SDSS. Applying the models directly to DES data provides a reasonable global accuracy ( 90%), but small completeness and purity values. A fast domain adaptation step, consisting in a further training with a small DES sample of galaxies (500-300), is enough for obtaining an accuracy > 95% and a significant improvement in the completeness and purity values. This demonstrates that, once trained with a particular dataset, machines can quickly adapt to new instrument characteristics (e.g., PSF, seeing, depth), reducing by almost one order of magnitude the necessary training sample for morphological classification. Redshift evolution effects or significant depth differences are not taken into account in this study.Peer reviewedFinal Accepted Versio
Semliki Forest virus induced, immune mediated demyelination: the effect of irradiation
International audienceThe Dark Energy Camera has captured a large set of images as part of Science Verification (SV) for the Dark Energy Survey (DES). The SV footprint covers a large portion of the outer Large Magellanic Cloud (LMC), providing photometry 1.5 mag fainter than the main sequence turn-off of the oldest LMC stellar population. We derive geometrical and structural parameters for various stellar populations in the LMC disc. For the distribution of all LMC stars, we find an inclination of i = -38.14° ± 0.08° (near side in the north) and a position angle for the line of nodes of θ0 = 129.51° ± 0.17°. We find that stars younger than ∼4 Gyr are more centrally concentrated than older stars. Fitting a projected exponential disc shows that the scale radius of the old populations is R>4 Gyr = 1.41 ± 0.01 kpc, while the younger population has R = 0.72 ± 0.01 kpc. However, the spatial distribution of the younger population deviates significantly from the projected exponential disc model. The distribution of old stars suggests a large truncation radius of Rt = 13.5 ± 0.8 kpc. If this truncation is dominated by the tidal field of the Galaxy, we find that the LMC is {∼eq } 24^{+9}_{-6} times less massive than the encircled Galactic mass. By measuring the Red Clump peak magnitude and comparing with the best-fitting LMC disc model, we find that the LMC disc is warped and thicker in the outer regions north of the LMC centre. Our findings may either be interpreted as a warped and flared disc in the LMC outskirts, or as evidence of a spheroidal halo component
Rest-Frame Optical Spectra of Three Strongly Lensed Galaxies at z~2
We present Keck II NIRSPEC rest-frame optical spectra for three recently
discovered lensed galaxies: the Cosmic Horseshoe (z = 2.38), the Clone (z =
2.00), and SDSS J090122.37+181432.3 (z = 2.26). The boost in signal-to-noise
ratio (S/N) from gravitational lensing provides an unusually detailed view of
the physical conditions in these objects. A full complement of high S/N
rest-frame optical emission lines is measured, spanning from rest-frame 3600 to
6800AA, including robust detections of fainter lines such as H-gamma,
[SII]6717,6732, and in one instance [NeII]3869. SDSS J090122.37+181432.3 shows
evidence for AGN activity, and therefore we focus our analysis on star-forming
regions in the Cosmic Horseshoe and the Clone. For these two objects, we
estimate a wide range of physical properties, including star-formation rate
(SFR), metallicity, dynamical mass, and dust extinction. In all respects, the
lensed objects appear fairly typical of UV-selected star-forming galaxies at
z~2. The Clone occupies a position on the emission-line diagnostic diagram of
[OIII]/H-beta vs. [NII]/H-alpha that is offset from the locations of z~0
galaxies. Our new NIRSPEC measurements may provide quantitative insights into
why high-redshift objects display such properties. From the [SII] line ratio,
high electron densities (~1000 cm^(-3)) are inferred compared to local
galaxies, and [OIII]/[OII] line ratios indicate higher ionization parameters
compared to the local population. Building on previous similar results at z~2,
these measurements provide further evidence (at high S/N) that star-forming
regions are significantly different in high-redshift galaxies, compared to
their local counterparts (abridged).Comment: 16 pages, 8 figures. Accepted for publication in the Astrophysical
Journa
Chemical Abundance Analysis of Tucana III, the Second -process Enhanced Ultra-Faint Dwarf Galaxy
We present a chemical abundance analysis of four additional confirmed member
stars of Tucana III, a Milky Way satellite galaxy candidate in the process of
being tidally disrupted as it is accreted by the Galaxy. Two of these stars are
centrally located in the core of the galaxy while the other two stars are
located in the eastern and western tidal tails. The four stars have chemical
abundance patterns consistent with the one previously studied star in Tucana
III: they are moderately enhanced in -process elements, i.e. they have
0.4 dex. The non-neutron-capture elements generally
follow trends seen in other dwarf galaxies, including a metallicity range of
0.44 dex and the expected trend in -elements, i.e., the lower
metallicity stars have higher Ca and Ti abundance. Overall, the chemical
abundance patterns of these stars suggest that Tucana III was an ultra-faint
dwarf galaxy, and not a globular cluster, before being tidally disturbed. As is
the case for the one other galaxy dominated by -process enhanced stars,
Reticulum II, Tucana III's stellar chemical abundances are consistent with
pollution from ejecta produced by a binary neutron star merger, although a
different -process element or dilution gas mass is required to explain the
abundances in these two galaxies if a neutron star merger is the sole source of
-process enhancement.Comment: 18 pages, 10 figures; accepted by Ap
- …
