7 research outputs found

    CMIP and ATP2C2 Modulate Phonological Short-Term Memory in Language Impairment

    Get PDF
    Specific language impairment (SLI) is a common developmental disorder characterized by difficulties in language acquisition despite otherwise normal development and in the absence of any obvious explanatory factors. We performed a high-density screen of SLI1, a region of chromosome 16q that shows highly significant and consistent linkage to nonword repetition, a measure of phonological short-term memory that is commonly impaired in SLI. Using two independent language-impaired samples, one family-based (211 families) and another selected from a population cohort on the basis of extreme language measures (490 cases), we detected association to two genes in the SLI1 region: that encoding c-maf-inducing protein (CMIP, minP = 5.5 × 10−7 at rs6564903) and that encoding calcium-transporting ATPase, type2C, member2 (ATP2C2, minP = 2.0 × 10−5 at rs11860694). Regression modeling indicated that each of these loci exerts an independent effect upon nonword repetition ability. Despite the consistent findings in language-impaired samples, investigation in a large unselected cohort (n = 3612) did not detect association. We therefore propose that variants in CMIP and ATP2C2 act to modulate phonological short-term memory primarily in the context of language impairment. As such, this investigation supports the hypothesis that some causes of language impairment are distinct from factors that influence normal language variation. This work therefore implicates CMIP and ATP2C2 in the etiology of SLI and provides molecular evidence for the importance of phonological short-term memory in language acquisition

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    <em>DCDC2</em>, <em>KIAA0319</em> and <em>CMIP</em> Are Associated with Reading-Related Traits

    No full text
    Background: Several susceptibility genes have been proposed for dyslexia (reading disability; RD) and specific language impairment (SLI). RD and SLI show comorbidity, but it is unclear whether a common genetic component is shared. Methods: We have investigated whether candidate genes for RD and SLI affect specific cognitive traits or have broad effect on cognition. We have analyzed common risk variants within RD (MRPL19/C2ORF3, KIAA0319, and DCDC2) and language impairment (CMIP and ATP2C2) candidate loci in the Avon Longitudinal Study of Parents and Children cohort (n = 3725), representing children born in southwest England in the early 1990s. Results: We detected associations between reading skills and KIAA0319, DCDC2, and CMIP. We show that DCDC2 is specifically associated with RD, whereas variants in CMIP and KIAA0319 are associated with reading skills across the ability range. The strongest associations were restricted to single-word reading and spelling measures, suggesting that these genes do not extend their effect to other reading and language-related skills. Inclusion of individuals with comorbidity tends to strengthen these associations. Our data do not support MRPL19/C2ORF3 as a locus involved in reading abilities nor CMIP/ATP2C2 as genes regulating language skills. Conclusions: We provide further support for the role of KIAA0319 and DCDC2 in contributing to reading abilities and novel evidence that the language-disorder candidate gene CMIP is also implicated in reading processes. Additionally, we present novel data to evaluate the prevalence and comorbidity of RD and SLI, and we recommend not excluding individuals with comorbid RD and SLI when designing genetic association studies for RD.</p

    DCDC2, KIAA0319 and CMIP Are Associated with Reading-Related Traits

    Get PDF
    Background: Several susceptibility genes have been proposed for dyslexia (reading disability; RD) and specific language impairment (SLI). RD and SLI show comorbidity, but it is unclear whether a common genetic component is shared. Methods: We have investigated whether candidate genes for RD and SLI affect specific cognitive traits or have broad effect on cognition. We have analyzed common risk variants within RD (MRPL19/C2ORF3, KIAA0319, and DCDC2) and language impairment (CMIP and ATP2C2) candidate loci in the Avon Longitudinal Study of Parents and Children cohort (n = 3725), representing children born in southwest England in the early 1990s. Results: We detected associations between reading skills and KIAA0319, DCDC2, and CMIP. We show that DCDC2 is specifically associated with RD, whereas variants in CMIP and KIAA0319 are associated with reading skills across the ability range. The strongest associations were restricted to single-word reading and spelling measures, suggesting that these genes do not extend their effect to other reading and language-related skills. Inclusion of individuals with comorbidity tends to strengthen these associations. Our data do not support MRPL19/C2ORF3 as a locus involved in reading abilities nor CMIP/ATP2C2 as genes regulating language skills. Conclusions: We provide further support for the role of KIAA0319 and DCDC2 in contributing to reading abilities and novel evidence that the language-disorder candidate gene CMIP is also implicated in reading processes. Additionally, we present novel data to evaluate the prevalence and comorbidity of RD and SLI, and we recommend not excluding individuals with comorbid RD and SLI when designing genetic association studies for RD. © 2011 Society of Biological Psychiatry

    1994 Annual Selected Bibliography: Asian American Studies and the Crisis of Practice

    No full text
    corecore