176 research outputs found

    Mitigating masked pixels in climate-critical datasets

    Full text link
    Remote sensing observations of the Earth's surface are frequently stymied by clouds, water vapour, and aerosols in our atmosphere. These degrade or preclude the measurementof quantities critical to scientific and, hence, societal applications. In this study, we train a natural language processing (NLP) algorithm with high-fidelity ocean simulations in order to accurately reconstruct masked or missing data in sea surface temperature (SST)--i.e. one of 54 essential climate variables identified by the Global Climate Observing System. We demonstrate that the Enki model repeatedly outperforms previously adopted inpainting techniques by up to an order-of-magnitude in reconstruction error, while displaying high performance even in circumstances where the majority of pixels are masked. Furthermore, experiments on real infrared sensor data with masking fractions of at least 40% show reconstruction errors of less than the known sensor uncertainty (RMSE < ~0.1K). We attribute Enki's success to the attentive nature of NLP combined with realistic SST model outputs, an approach that may be extended to other remote sensing variables. This study demonstrates that systems built upon Enki--or other advanced systems like it--may therefore yield the optimal solution to accurate estimates of otherwise missing or masked parameters in climate-critical datasets sampling a rapidly changing Earth.Comment: 21 pages, 6 main figure, 3 in Appendix; submitte

    The role of curvature in modifying frontal instabilities. Part I: Review of theory and presentation of a nondimensional instability criterion

    Get PDF
    In this study, we examine the role of curvature in modifying frontal stability. We first evaluate the classical criterion that the Coriolis parameter, f, multiplied by the Ertel potential vorticity (PV), q, is positive for stable flow and that instability is possible when this quantity is negative. The first portion of this statement can be deduced from Ertel’s PV theorem, assuming an initially positive fq. Moreover, the full statement is implicit in the governing equation for the mean flow, as the discriminant, fq, changes sign. However, for curved fronts in cyclo-geostrophic or gradient wind balance (GWB), an additional term enters the discriminant owing to conservation of absolute angular momentum, L. The resulting expression, Lq < 0, simultaneously generalizes Rayleigh’s (1917) criterion by accounting for baroclinicity and Hoskins’ (1974) criterion by accounting for centrifugal effects. In particular, changes in the front’s vertical shear and stratification owing to curvature tilt the absolute vorticity vector away from its thermal wind state; in an effort to conserve the product of absolute angular momentum and Ertel PV, this modifies gradient Rossby and Richardson numbers permitted for stable flow. This forms the basis of a non-dimensional expression valid for inviscid, curved fronts on the f -plane, which can be used to classify frontal instabilities. In conclusion, the classical criterion, fq < 0, should be replaced by the more general criterion, Lq < 0, for studies involving gravitational, centrifugal, and symmetric instabilities at curved density fronts. In Part 2 of the study, we examine interesting outcomes of the criterion applied to low-Richardson number fronts and vortices in GWB

    The role of curvature in modifying frontal instabilities. Part II: Application of the criterion to curved density fronts at low Richardson numbers

    Get PDF
    We continue our study of the role of curvature in modifying frontal stability. In Part 1, we obtained an instability criterion valid for curved fronts and vortices in gradient wind balance (GWB): Φ′ = L′q′ < 0, where L′ and q′ are the non-dimensional absolute angular momentum and Ertel potential vorticity (PV), respectively. In Part 2, we investigate this criterion in a parameter space representative of low-Richardson number fronts and vortices in GWB. An interesting outcome is that, for Richardson numbers near one, anticyclonic flows increase in q′, while cyclonic flows decrease in q′, tending to stabilize anticyclonic and de-stabilize cyclonic flow. Although stability is marginal or weak for anticyclonic flow (owing to multiplication by L′), the de-stabilization of cyclonic flow is pronounced, and may help to explain an observed asymmetry in the distribution of small-scale, coherent vortices in the ocean interior. We are referring mid-latitude submesoscale and polar mesoscale vortices that are generated by friction and/or buoyancy forcing within boundary layers but that are often documented outside these layers. A comparison is made between several documented vortices and predicted stability maps, providing support for the proposed mechanism. Finally, a simple expression, which is a root of the stability discriminant, Φ′, explains the observed asymmetry in the distribution of vorticity. In conclusion, the generalized criterion is consistent with theory, observations and recent modeling studies, and demonstrates that curvature in low-stratified environments can de-stabilize cyclonic and stabilize anticyclonic fronts and vortices to symmetric instability. The results may have implications for Earth system models

    Influence of socio-cultural factors and gender on waste behaviour of travellers: Insights from 11 touristic destinations in Europe

    Get PDF
    In the course of a global increase of tourism, the need to deal with waste generation, management and prevention caused by tourism activities requires increased attention. In this regard, tourists’ behaviour is a crucial factor for improving the efficacy and efficiency of the waste strategies in place. Tourists’ behaviour has been extensively studied in terms of environmental awareness, while less attention has been given to behaviour and attitudes of tourists in terms of waste generation and prevention. Especially, the socio-cultural and gender component have been hardly addressed in available research. There is some evidence about differences in environmental attitudes and behaviour between tourists from different countries of origin, just as there is evidence of different attitudes towards the environment between men and women, but these two sets of evidences are not integrated, and certainly not with regard to waste behaviour. The present study was developed as part of the H2020 project “URBANWASTE” that aims at understanding the influence of tourism on waste management and production and at developing eco-innovative and gender sensitive strategies for waste prevention and management in 11 European pilot cases. Particularly, this study aimed at analysing and understanding the role and effect of socio-cultural factors (e.g. place of residence, age, education) and gender on ‘waste behaviour’ of tourists; the study includes the tourists’ behaviour at home in comparison to their behaviour on holidays and accounts, hence, also for ‘behavioural gaps’ between home- vs. holiday-behaviour

    Open-ocean submesoscale motions: a full seasonal cycle of mixed layer instabilities from gliders

    Get PDF
    The importance of submesoscale instabilities, particularly mixed-layer baroclinic instability and symmetric instability, on upper ocean mixing and energetics is well documented in regions of strong, persistent fronts such as the Kuroshio and the Gulf Stream. Less attention has been devoted to studying submesoscale flows in the open ocean, far from long-term mean geostrophic fronts, characteristic of a large proportion of the global ocean. We present a year-long, submesoscale-resolving time series of near-surface buoyancy gradients, potential vorticity and instability characteristics, collected by ocean gliders, that provides insight into open-ocean submesoscale dynamics over a full annual cycle. The gliders continuously sampled a 225 km2 region in the subtropical northeast Atlantic, measuring temperature, salinity and pressure along 292 short (\~{}20 km) hydrographic sections.Glider observations show a seasonal cycle in near-surface stratification. Throughout the fall (September through November), the mixed layer deepens, predominantly through gravitational instability, indicating that surface cooling dominates submesoscale restratification processes. During winter (December through March), mixed layer depths are more variable, and estimates of the balanced Richardson number, which measures the relative importance of lateral and vertical buoyancy gradients, depict conditions favorable to symmetric instability. The importance of mixed layer instabilities on the restratification of the mixed layer, as compared with surface heating and cooling, shows that submesoscale processes can reverse the sign of an equivalent heat flux up to 25{\%} of the time during winter. These results demonstrate that the open-ocean mixed layer hosts various forced and unforced instabilities, which become more prevalent during winter, and emphasize that accurate parameterizations of submesoscale processes are needed throughout the ocean

    The contribution of surface and submesoscale processes to turbulence in the open ocean surface boundary layer

    Get PDF
    The ocean surface boundary layer is a critical interface across which momentum, heat, and trace gases are exchanged between the oceans and atmosphere. Surface processes (winds, waves, and buoyancy forcing) are known to contribute significantly to fluxes within this layer. Recently, studies have suggested that submesoscale processes, which occur at small scales (0.1–10 km, hours to days) and therefore are not yet represented in most ocean models, may play critical roles in these turbulent exchanges. While observational support for such phenomena has been demonstrated in the vicinity of strong current systems and littoral regions, relatively few observations exist in the open‐ocean environment to warrant representation in Earth system models. We use novel observations and simulations to quantify the contributions of surface and submesoscale processes to turbulent kinetic energy (TKE) dissipation in the open‐ocean surface boundary layer. Our observations are derived from moorings in the North Atlantic, December 2012 to April 2013, and are complemented by atmospheric reanalysis. We develop a conceptual framework for dissipation rates due to surface and submesoscale processes. Using this framework and comparing with observed dissipation rates, we find that surface processes dominate TKE dissipation. A parameterization for symmetric instability is consistent with this result. We next employ simulations from an ocean front‐resolving model to reestablish that dissipation due to surface processes exceeds that of submesoscale processes by 1–2 orders of magnitude. Together, these results suggest submesoscale processes do not dramatically modify vertical TKE budgets, though such dynamics may be climatically important owing to their ability to remove energy from the ocean

    An annual cycle of submesoscale vertical flow and restratification in the upper ocean

    Get PDF
    Numerical simulations suggest that submesoscale turbulence may transform lateral buoyancy gradients into vertical stratification, and thus restratify the upper ocean via vertical flow. However, the observational evidence for this restratifying process has been lacking due to the difficulty in measuring such ephemeral phenomena, particularly over periods of months to years. This study presents an annual cycle of the vertical velocity and associated restratification estimated from two nested clusters of meso- and submesoscale-resolving moorings, deployed in a typical mid-ocean area of the Northeast Atlantic. Vertical velocities inferred using the non-diffusive density equation are substantially stronger at submesoscales (horizontal scales of 1-10 km) than at mesoscales (horizontal scales of 10-100 km), with respective root mean square values of 38.0 ± 6.9 m/day and 22.5 ± 3.3 m/day. The largest submesoscale vertical velocities and rates of restratification occur in events of a few days’ duration in winter and spring, and extend down to at least 200 m below the mixed layer base. These events commonly coincide with the enhancement of submesoscale lateral buoyancy gradients, which is itself associated with persistent mesoscale frontogenesis. This suggests that mesoscale frontogenesis is a regular precursor of the submesoscale turbulence that restratifies the upper ocean. The upper-ocean restratification induced by submesoscale motions integrated over the annual cycle is comparable in magnitude to the net destratification driven by local atmospheric cooling, indicating that submesoscale flows play a significant role in determining the climatological upper-ocean stratification in the study area

    Laterality Enhances Numerical Skills in the Guppy, Poecilia reticulata

    Get PDF
    It has been hypothesized that cerebral lateralization can significantly enhance cognition and that this was one of the primary selective forces shaping its wide-spread evolution amongst vertebrate taxa. Here, we tested this hypothesis by examining the link between cerebral lateralization and numerical discrimination. Guppies, Poecilia reticulata, were sorted into left, right and non-lateralized groups using a standard mirror test and their numerical discrimination abilities tested in both natural shoal choice and abstract contexts. Our results show that strongly lateralized guppies have enhanced numerical abilities compared to non-lateralized guppies irrespective of context. These data provide further credence to the notion that cerebral lateralization can enhance cognitive efficiency

    Rapid mixing and exchange of deep-ocean waters in an abyssal boundary current

    Get PDF
    The overturning circulation of the global ocean is critically shaped by deep-ocean mixing, which transforms cold waters sinking at high latitudes into warmer, shallower waters. The effectiveness of mixing in driving this transformation is jointly set by two factors: the intensity of turbulence near topography and the rate at which well-mixed boundary waters are exchanged with the stratified ocean interior. Here, we use innovative observations of a major branch of the overturning circulation—an abyssal boundary current in the Southern Ocean—to identify a previously undocumented mixing mechanism, by which deep-ocean waters are efficiently laundered through intensified near-boundary turbulence and boundary–interior exchange. The linchpin of the mechanism is the generation of submesoscale dynamical instabilities by the flow of deep-ocean waters along a steep topographic boundary. As the conditions conducive to this mode of mixing are common to many abyssal boundary currents, our findings highlight an imperative for its representation in models of oceanic overturning
    corecore