97 research outputs found

    On the conceptualization and measurement of flow

    Get PDF
    This chapter introduces in chronological order the three main measurement methods – the Flow Questionnaire, the Experience Sampling Method, and the standardized scales of the componential approach – that researchers developed and used in conducting research on the flow state. Each measurement method and underlying conceptualization is explained, and its strengths and limitations are then discussed in relation to the other measurement methods and associated conceptualizations. The analysis reveals that, although the concept of flow remained stable since its inception, the models of flow that researchers developed in conjunction with the measurement methods changed substantially over time. Moreover, the findings obtained by applying the various measurement methods led to corroborations and disconfirmations of the underlying models, and hence provided indications on how to interpret and possibly modify flow theory. The chapter then analyzes the emerging process approach, which conceptualizes and measures flow as a dynamic path rather than an object, and highlights its potential for integrating flow and creativity within the same conceptual framework. The final section outlines new directions for developing more valid and useful measurement methods that can help to advance the understanding of flow, its antecedents, and its consequences

    Positive Selection in East Asians for an EDAR Allele that Enhances NF-κB Activation

    Get PDF
    Genome-wide scans for positive selection in humans provide a promising approach to establish links between genetic variants and adaptive phenotypes. From this approach, lists of hundreds of candidate genomic regions for positive selection have been assembled. These candidate regions are expected to contain variants that contribute to adaptive phenotypes, but few of these regions have been associated with phenotypic effects. Here we present evidence that a derived nonsynonymous substitution (370A) in EDAR, a gene involved in ectodermal development, was driven to high frequency in East Asia by positive selection prior to 10,000 years ago. With an in vitro transfection assay, we demonstrate that 370A enhances NF-κB activity. Our results suggest that 370A is a positively selected functional genetic variant that underlies an adaptive human phenotype

    Improved Control of Tuberculosis and Activation of Macrophages in Mice Lacking Protein Kinase R

    Get PDF
    Host factors that microbial pathogens exploit for their propagation are potential targets for therapeuic countermeasures. No host enzyme has been identified whose genetic absence benefits the intact mammalian host in vivo during infection with Mycobacterium tuberculosis (Mtb), the leading cause of death from bacterial infection. Here, we report that the dsRNA-dependent protein kinase (PKR) is such an enzyme. PKR-deficient mice contained fewer viable Mtb and showed less pulmonary pathology than wild type mice. We identified two potential mechanisms for the protective effect of PKR deficiency: increased apoptosis of macrophages in response to Mtb and enhanced activation of macrophages in response to IFN-gamma. The restraining effect of PKR on macrophage activation was explained by its mediation of a previously unrecognized ability of IFN-gamma to induce low levels of the macrophage deactivating factor interleukin 10 (IL10). These observations suggest that PKR inhibitors may prove useful as an adjunctive treatment for tuberculosis

    Efficacy of an adjunctive brief psychodynamic psychotherapy to usual inpatient treatment of depression: rationale and design of a randomized controlled trial.

    Get PDF
    BACKGROUND: A few recent studies have found indications of the effectiveness of inpatient psychotherapy for depression, usually of an extended duration. However, there is a lack of controlled studies in this area and to date no study of adequate quality on brief psychodynamic psychotherapy for depression during short inpatient stay exists. The present article describes the protocol of a study that will examine the relative efficacy, the cost-effectiveness and the cost-utility of adding an Inpatient Brief Psychodynamic Psychotherapy to pharmacotherapy and treatment-as-usual for inpatients with unipolar depression. METHODS/DESIGN: The study is a one-month randomized controlled trial with a two parallel group design and a 12-month naturalistic follow-up. A sample of 130 consecutive adult inpatients with unipolar depression and Montgomery-Asberg Depression Rating Scale score over 18 will be recruited. The study is carried out in the university hospital section for mood disorders in Lausanne, Switzerland. Patients are assessed upon admission, and at 1-, 3- and 12- month follow-ups. Inpatient therapy is a manualized brief intervention, combining the virtues of inpatient setting and of time-limited dynamic therapies (focal orientation, fixed duration, resource-oriented interventions). Treatment-as-usual represents the best level of practice for a minimal treatment condition usually proposed to inpatients. Final analyses will follow an intention-to-treat strategy. Depressive symptomatology is the primary outcome and secondary outcome includes measures of psychiatric symptomatology, psychosocial role functioning, and psychodynamic-emotional functioning. The mediating role of the therapeutic alliance is also examined. Allocation to treatment groups uses a stratified block randomization method with permuted block. To guarantee allocation concealment, randomization is done by an independent researcher. DISCUSSION: Despite the large number of studies on treatment of depression, there is a clear lack of controlled research in inpatient psychotherapy during the acute phase of a major depressive episode. Research on brief therapy is important to take into account current short lengths of stay in psychiatry. The current study has the potential to scientifically inform appropriate inpatient treatment. This study is the first to address the issue of the economic evaluation of inpatient psychotherapy. TRIAL REGISTRATION: Australian New Zealand Clinical Trial Registry (ACTRN12612000909820)

    Identification of glucose transporters in Aspergillus nidulans

    Get PDF
    o characterize the mechanisms involved in glucose transport, in the filamentous fungus Aspergillus nidulans, we have identified four glucose transporter encoding genes hxtB-E. We evaluated the ability of hxtB-E to functionally complement the Saccharomyces cerevisiae EBY.VW4000 strain that is unable to grow on glucose, fructose, mannose or galactose as single carbon source. In S. cerevisiae HxtB-E were targeted to the plasma membrane. The expression of HxtB, HxtC and HxtE was able to restore growth on glucose, fructose, mannose or galactose, indicating that these transporters accept multiple sugars as a substrate through an energy dependent process. A tenfold excess of unlabeled maltose, galactose, fructose, and mannose were able to inhibit glucose uptake to different levels (50 to 80 %) in these s. cerevisiae complemented strains. Moreover, experiments with cyanide-m-chlorophenylhydrazone (CCCP), strongly suggest that hxtB, -C, and –E mediate glucose transport via active proton symport. The A. nidulans ΔhxtB, ΔhxtC or ΔhxtE null mutants showed ~2.5-fold reduction in the affinity for glucose, while ΔhxtB and -C also showed a 2-fold reduction in the capacity for glucose uptake. The ΔhxtD mutant had a 7.8-fold reduction in affinity, but a 3-fold increase in the capacity for glucose uptake. However, only the ΔhxtB mutant strain showed a detectable decreased rate of glucose consumption at low concentrations and an increased resistance to 2-deoxyglucose.The authors would like to thank the Fundacao de Amparo a Pesquisa do Estado de Sao Paulo and Conselho Nacional de Desenvolvimento Cientifico e Tecnologico, Brazil for financial support. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Different Mi-2 Complexes for Various Developmental Functions in Caenorhabditis elegans

    Get PDF
    Biochemical purifications from mammalian cells and Xenopus oocytes revealed that vertebrate Mi-2 proteins reside in multisubunit NuRD (Nucleosome Remodeling and Deacetylase) complexes. Since all NuRD subunits are highly conserved in the genomes of C. elegans and Drosophila, it was suggested that NuRD complexes also exist in invertebrates. Recently, a novel dMec complex, composed of dMi-2 and dMEP-1 was identified in Drosophila. The genome of C. elegans encodes two highly homologous Mi-2 orthologues, LET-418 and CHD-3. Here we demonstrate that these proteins define at least three different protein complexes, two distinct NuRD complexes and one MEC complex. The two canonical NuRD complexes share the same core subunits HDA-1/HDAC, LIN-53/RbAp and LIN-40/MTA, but differ in their Mi-2 orthologues LET-418 or CHD-3. LET-418 but not CHD-3, interacts with the Krüppel-like protein MEP-1 in a distinct complex, the MEC complex. Based on microarrays analyses, we propose that MEC constitutes an important LET-418 containing regulatory complex during C. elegans embryonic and early larval development. It is required for the repression of germline potential in somatic cells and acts when blastomeres are still dividing and differentiating. The two NuRD complexes may not be important for the early development, but may act later during postembryonic development. Altogether, our data suggest a considerable complexity in the composition, the developmental function and the tissue-specificity of the different C. elegans Mi-2 complexes

    Interaction of Pattern Recognition Receptors with Mycobacterium Tuberculosis.

    Get PDF
    Tuberculosis (TB) is considered a major worldwide health problem with 10 million new cases diagnosed each year. Our understanding of TB immunology has become greater and more refined since the identification of Mycobacterium tuberculosis (MTB) as an etiologic agent and the recognition of new signaling pathways modulating infection. Understanding the mechanisms through which the cells of the immune system recognize MTB can be an important step in designing novel therapeutic approaches, as well as improving the limited success of current vaccination strategies. A great challenge in chronic disease is to understand the complexities, mechanisms, and consequences of host interactions with pathogens. Innate immune responses along with the involvement of distinct inflammatory mediators and cells play an important role in the host defense against the MTB. Several classes of pattern recognition receptors (PRRs) are involved in the recognition of MTB including Toll-Like Receptors (TLRs), C-type lectin receptors (CLRs) and Nod-like receptors (NLRs) linked to inflammasome activation. Among the TLR family, TLR1, TLR2, TLR4, and TLR9 and their down-stream signaling proteins play critical roles in the initiation of the immune response in the pathogenesis of TB. The inflammasome pathway is associated with the coordinated release of cytokines such as IL-1β and IL-18 which also play a role in the pathogenesis of TB. Understanding the cross-talk between these signaling pathways will impact on the design of novel therapeutic strategies and in the development of vaccines and immunotherapy regimes. Abnormalities in PRR signaling pathways regulated by TB will affect disease pathogenesis and need to be elucidated. In this review we provide an update on PRR signaling during M. tuberculosis infection and indicate how greater knowledge of these pathways may lead to new therapeutic opportunities

    Mycobacteria counteract a TLR-mediated nitrosative defense mechanism in a zebrafish infection model.

    Get PDF
    Pulmonary tuberculosis (TB), caused by the intracellular bacterial pathogen Mycobacterium tuberculosis (Mtb), is a major world health problem. The production of reactive nitrogen species (RNS) is a potent cytostatic and cytotoxic defense mechanism against intracellular pathogens. Nevertheless, the protective role of RNS during Mtb infection remains controversial. Here we use an anti-nitrotyrosine antibody as a readout to study nitration output by the zebrafish host during early mycobacterial pathogenesis. We found that recognition of Mycobacterium marinum, a close relative of Mtb, was sufficient to induce a nitrosative defense mechanism in a manner dependent on MyD88, the central adaptor protein in Toll like receptor (TLR) mediated pathogen recognition. However, this host response was attenuated by mycobacteria via a virulence mechanism independent of the well-characterized RD1 virulence locus. Our results indicate a mechanism of pathogenic mycobacteria to circumvent host defense in vivo. Shifting the balance of host-pathogen interactions in favor of the host by targeting this virulence mechanism may help to alleviate the problem of infection with Mtb strains that are resistant to multiple drug treatments
    corecore