193 research outputs found

    The Modern Universal Total Knee Arthroplasty: Maximized Value, Streamlined Efficiency

    Get PDF
    A universal total knee arthroplasty system able to accurately resurface either left or right knees of all shapes and sizes is compelling as there is an increased need for improved efficiency and value. With a modern universal total knee system, a single instrument tray can be utilized for more than 90% of cases and doesn’t require any specific customization or disposable instruments. This streamlined workflow is accomplished with unique instrumentation that features a symmetrical femoral and tibial implant for all patients. Symmetrical tibial implants have been shown to have equivalent outcomes and low complications compared to asymmetric tibial trays. The universal symmetrical femoral implant, with its deepened trochlear groove, allows for optimal patellar tracking and recent studies have demonstrated this symmetrical femoral implant to have comparable femoral rollback and axial rotation to native knees. This efficient instrumentation reduces overall inventory, decreases turnover times, and exposes fewer instruments that may otherwise be susceptible to contamination. All without detriment to the patient outcome or surgeon workflow. Studies have shown clinical scores of the modern universal total knee arthroplasty system are a great value not only to the surgeon but also to the healthcare system as a whole—a necessity in modern healthcare

    Cetuximab Augments Cytotoxicity with Poly (ADP-Ribose) Polymerase Inhibition in Head and Neck Cancer

    Get PDF
    Overexpression of the epidermal growth factor receptor (EGFR) is a hallmark of head and neck cancers and confers increased resistance and inferior survival rates. Despite targeted agents against EGFR, such as cetuximab (C225), almost half of treated patients fail this therapy, necessitating novel therapeutic strategies. Poly (ADP-Ribose) polymerase (PARP) inhibitors (PARPi) have gained recent attention due to their unique selectivity in killing tumors with defective DNA repair. In this study, we demonstrate that C225 enhances cytotoxicity with the PARPi ABT-888 in UM-SCC1, UM-SCC6, and FaDu head and neck cancer cells. The mechanism of increased susceptibility to C225 and PARPi involves C225-mediated reduction of non-homologous end-joining (NHEJ)- and homologous recombination (HR)-mediated DNA double strand break (DSB) repair, the subsequent persistence of DNA damage, and activation of the intrinsic apoptotic pathway. By generating a DSB repair deficiency, C225 can render head and neck tumor cells susceptible to PARP inhibition. The combination of C225 and the PARPi ABT-888 can thus be an innovative treatment strategy to potentially improve outcomes in head and neck cancer patients. Furthermore, this strategy may also be feasible for other EGFR overexpressing tumors, including lung and brain cancers

    The Significance of Hair for Face Recognition

    Get PDF
    Hair is a feature of the head that frequently changes in different situations. For this reason much research in the area of face perception has employed stimuli without hair. To investigate the effect of the presence of hair we used faces with and without hair in a recognition task. Participants took part in trials in which the state of the hair either remained consistent (Same) or switched between learning and test (Switch). It was found that in the Same trials performance did not differ for stimuli presented with and without hair. This implies that there is sufficient information in the internal features of the face for optimal performance in this task. It was also found that performance in the Switch trials was substantially lower than in the Same trials. This drop in accuracy when the stimuli were switched suggests that faces are represented in a holistic manner and that manipulation of the hair causes disruption to this, with implications for the interpretation of some previous studies

    Inhibition of Non-Homologous End Joining Repair Impairs Pancreatic Cancer Growth and Enhances Radiation Response

    Get PDF
    Pancreatic ductal adenocarcinoma (PDAC) is amongst the deadliest of human cancers, due to its late diagnosis as well as its intense resistance to currently available therapeutics. To identify mechanisms as to why PDAC are refractory to DNA damaging cytoxic chemotherapy and radiation, we performed a global interrogation of the DNA damage response of PDAC. We find that PDAC cells generally harbor high levels of spontaneous DNA damage. Inhibition of Non-Homologous End Joining (NHEJ) repair either pharmacologically or by RNAi resulted in a further accumulation of DNA damage, inhibition of growth, and ultimately apoptosis even in the absence of exogenous DNA damaging agents. In response to radiation, PDAC cells rely on the NHEJ pathway to rapidly repair DNA double strand breaks. Mechanistically, when NHEJ is inhibited there is a compensatory increase in Homologous Recombination (HR). Despite this upregulation of HR, DNA damage persists and cells are significantly more sensitive to radiation. Together, these findings support the incorporation of NHEJ inhibition into PDAC therapeutic approaches, either alone, or in combination with DNA damaging therapies such as radiation

    Intensive versus standard physical rehabilitation therapy in the critically ill (EPICC): a multicentre, parallel-group, randomised controlled trial

    Get PDF
    Background Early physical rehabilitation in the intensive care unit (ICU) has been shown to improve short-term clinical outcomes but long-term benefit has not been proven and the optimum intensity of rehabilitation is not known. Methods We conducted a randomised, parallel-group, allocation-concealed, assessor-blinded, controlled trial in patients who had received at least 48 hours of invasive or non-invasive ventilation. Participants were randomised in a 1:1 ratio, stratified by admitting ICU, admission type and level of independence. The intervention group had a target of 90 min physical rehabilitation per day, the control group a target of 30 min per day (both Monday to Friday). The primary outcome was the Physical Component Summary (PCS) measure of SF-36 at 6 months. Results We recruited 308 participants over 34 months: 150 assigned to the intervention and 158 to the control group. The intervention group received a median (IQR) of 161 (67-273) min of physical rehabilitation on ICU compared with 86 (31-139) min in the control group. At 6 months, 62 participants in the intervention group and 54 participants in the control group contributed primary outcome data. In the intervention group, 43 had died, 11 had withdrawn and 34 were lost to follow-up, while in the control group, 56 had died, 5 had withdrawn and 43 were lost to follow-up. There was no difference in the primary outcome at 6 months, mean (SD) PCS 37 (12.2) in the intervention group and 37 (11.3) in the control group. Conclusions In this study, ICU-based physical rehabilitation did not appear to improve physical outcomes at 6 months compared with standard physical rehabilitation. Trial registration number ISRCTN 20436833

    Size Doesn't Matter: Towards a More Inclusive Philosophy of Biology

    Get PDF
    notes: As the primary author, O’Malley drafted the paper, and gathered and analysed data (scientific papers and talks). Conceptual analysis was conducted by both authors.publication-status: Publishedtypes: ArticlePhilosophers of biology, along with everyone else, generally perceive life to fall into two broad categories, the microbes and macrobes, and then pay most of their attention to the latter. ‘Macrobe’ is the word we propose for larger life forms, and we use it as part of an argument for microbial equality. We suggest that taking more notice of microbes – the dominant life form on the planet, both now and throughout evolutionary history – will transform some of the philosophy of biology’s standard ideas on ontology, evolution, taxonomy and biodiversity. We set out a number of recent developments in microbiology – including biofilm formation, chemotaxis, quorum sensing and gene transfer – that highlight microbial capacities for cooperation and communication and break down conventional thinking that microbes are solely or primarily single-celled organisms. These insights also bring new perspectives to the levels of selection debate, as well as to discussions of the evolution and nature of multicellularity, and to neo-Darwinian understandings of evolutionary mechanisms. We show how these revisions lead to further complications for microbial classification and the philosophies of systematics and biodiversity. Incorporating microbial insights into the philosophy of biology will challenge many of its assumptions, but also give greater scope and depth to its investigations

    Genetic mechanisms of critical illness in COVID-19.

    Get PDF
    Host-mediated lung inflammation is present1, and drives mortality2, in the critical illness caused by coronavirus disease 2019 (COVID-19). Host genetic variants associated with critical illness may identify mechanistic targets for therapeutic development3. Here we report the results of the GenOMICC (Genetics Of Mortality In Critical Care) genome-wide association study in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units. We have identified and replicated the following new genome-wide significant associations: on chromosome 12q24.13 (rs10735079, P = 1.65 × 10-8) in a gene cluster that encodes antiviral restriction enzyme activators (OAS1, OAS2 and OAS3); on chromosome 19p13.2 (rs74956615, P = 2.3 × 10-8) near the gene that encodes tyrosine kinase 2 (TYK2); on chromosome 19p13.3 (rs2109069, P = 3.98 ×  10-12) within the gene that encodes dipeptidyl peptidase 9 (DPP9); and on chromosome 21q22.1 (rs2236757, P = 4.99 × 10-8) in the interferon receptor gene IFNAR2. We identified potential targets for repurposing of licensed medications: using Mendelian randomization, we found evidence that low expression of IFNAR2, or high expression of TYK2, are associated with life-threatening disease; and transcriptome-wide association in lung tissue revealed that high expression of the monocyte-macrophage chemotactic receptor CCR2 is associated with severe COVID-19. Our results identify robust genetic signals relating to key host antiviral defence mechanisms and mediators of inflammatory organ damage in COVID-19. Both mechanisms may be amenable to targeted treatment with existing drugs. However, large-scale randomized clinical trials will be essential before any change to clinical practice

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2–4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    Understanding American Power:Conceptual clarity, strategic priorities and the decline debate

    Get PDF
    What does it mean for the United States to be powerful? The prospect of a decline in American power, especially relative to a rising China, has attracted considerable scholarly and political attention. Despite a wealth of data, disagreements persist regarding both the likely trajectory of the US-China balance and the most effective strategy for preserving America’s advantage into the future. This article locates the source of these enduring disputes in fundamental conceptual differences over the meaning of power itself. We map the distinct tracks of argument within the decline debate, showing that competing positions are often rooted in differences of focus rather than disputes over fact. Most fundamental is a divide between analyses dedicated to national capabilities, and others that emphasise mechanisms of relational power. This divide underpins how strategists think about the goal of preserving or extending American power. We therefore construct a typology of competing understandings of what it means for America to be powerful, to show that a strategy suited to bolstering American power according to one definition of that goal may not support, and may even undermine, American power understood in other ways
    corecore